npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

zf-vectra

v0.0.3

Published

A vector database that uses the local file system for storage.

Downloads

5

Readme

Vectra

Vectra is a local vector database for Node.js with features similar to Pinecone or Qdrant but built using local files. Each Vectra index is a folder on disk. There's an index.json file in the folder that contains all the vectors for the index along with any indexed metadata. When you create an index you can specify which metadata properties to index and only those fields will be stored in the index.json file. All of the other metadata for an item will be stored on disk in a separate file keyed by a GUID.

When queryng Vectra you'll be able to use the same subset of Mongo DB query operators that Pinecone supports and the results will be returned sorted by simularity. Every item in the index will first be filtered by metadata and then ranked for simularity. Even though every item is evaluated its all in memory so it should by nearly instantanious. Likely 1ms - 2ms for even a rather large index. Smaller indexes should be <1ms.

Keep in mind that your entire Vectra index is loaded into memory so it's not well suited for scenarios like long term chat bot memory. Use a real vector DB for that. Vectra is intended to be used in scenarios where you have a small corpus of mostly static data that you'd like to include in your prompt. Infinite few shot examples would be a great use case for Vectra or even just a single document you want to ask questions over.

Pinecone style namespaces aren't directly supported but you could easily mimic them by creating a separate Vectra index (and folder) for each namespace.

Other Language Bindings

This repo contains the TypeScript/JavaScript binding for Vectra but other language bindings are being created. Since Vectra is file based, any language binding can be used to read or write a Vectra index. That means you can build a Vectra index using JS and then read it using Python.

Installation

$ npm install vectra

Usage

First create an instance of LocalIndex with the path to the folder where you want you're items stored:

import { LocalIndex } from 'vectra';

const index = new LocalIndex(path.join(__dirname, '..', 'index'));

Next, from inside an async function, create your index:

if (!await index.isIndexCreated()) {
    await index.createIndex();
}

Add some items to your index:

import { OpenAIApi, Configuration } from 'openai';

const configuration = new Configuration({
    apiKey: `<YOUR_KEY>`,
});

const api = new OpenAIApi(configuration);

async function getVector(text: string) {
    const response = await api.createEmbedding({
        'model': 'text-embedding-ada-002',
        'input': text,
    });
    return response.data.data[0].embedding;
}

async function addItem(text: string) {
    await index.insertItem({
        vector: await getVector(text),
        metadata: { text }
    });
}

// Add items
await addItem('apple');
await addItem('oranges');
await addItem('red');
await addItem('blue');

Then query for items:

async function query(text: string) {
    const vector = await getVector(text);
    const results = await index.queryItems(vector, 3);
    if (results.length > 0) {
        for (const result of results) {
            console.log(`[${result.score}] ${result.item.metadata.text}`);
        }
    } else {
        console.log(`No results found.`);
    }
}

await query('green');
/*
[0.9036569942401076] blue
[0.8758153664568566] red
[0.8323828606103998] apple
*/

await query('banana');
/*
[0.9033128691220631] apple
[0.8493374123092652] oranges
[0.8415324469533297] blue
*/