wuzzy
v0.1.8
Published
library for simularity identification
Downloads
309,418
Maintainers
Readme
Overview
Wuzzy was created to provide a smattering of some similarity identification stuff. Several simularity identification algorithm implementations are provided, including:
- Jaccard similarity coefficient
- Tanimoto coefficient
- Pearson correlation
- N-gram edit distance
- Levenshtein distance
- Jaro-Winkler distance
Fuzzy wuzzy was a bear, fuzzy wuzzy had no hair, fuzzy wuzzy wasn't very fuzzy, was he? Well, if you aren't sure maybe this library can help! :)
Installing
Wuzzy can be installed via npm (npm install wuzzy
).
Examples
Some examples of using Wuzzy can be found in the real-wuzzy repository.
Methods
All bad jokes aside, below is a listing of the available functions. Have fun!
jarowinkler(a, b, t)
Computes the jaro-winkler distance for two given arrays.
NOTE: this implementation is based on the one found in the Lucene Java library.
Examples:
wuzzy.jarowinkler(
['D', 'W', 'A', 'Y', 'N', 'E'],
['D', 'U', 'A', 'N', 'E']
);
// -> 0.840
wuzzy.jarowinkler(
'DWAYNE',
'DUANE'
);
// -> 0.840
Params:
- String|Array a - the first string/array to compare
- String|Array b - the second string/array to compare
- Number t - the threshold for adding
Return:
- Number returns the jaro-winkler distance for
levenshtein(a, b, w)
Calculates the levenshtein distance for the two provided arrays and returns the normalized distance.
Examples:
wuzzy.levenshtein(
['D', 'W', 'A', 'Y', 'N', 'E'],
['D', 'U', 'A', 'N', 'E']
);
// -> 0.66666667
or
wuzzy.levenshtein(
'DWAYNE',
'DUANE'
);
// -> 0.66666667
Params:
- String|Array a - the first string/array to compare
- String|Array b - the second string/array to compare
- Object w - (optional) a set of key/value pairs
Return:
- Number returns the levenshtein distance for
ngram(a, b, ng)
Computes the n-gram edit distance for any n (defaults to 2).
NOTE: this implementation is based on the one found in the Lucene Java library.
Examples:
wuzzy.ngram(
['D', 'W', 'A', 'Y', 'N', 'E'],
['D', 'U', 'A', 'N', 'E']
);
// -> 0.583
or
wuzzy.ngram(
'DWAYNE',
'DUANE'
);
// -> 0.583
Params:
- String|Array a - the first string/array to compare
- String|Array b - the second string/array to compare
- Number ng - (optional) the n-gram size to work with (defaults to 2)
Return:
- Number returns the ngram distance for
pearson(a, b)
Calculates a pearson correlation score for two given objects (compares values of similar keys).
Examples:
wuzzy.pearson(
{a: 2.5, b: 3.5, c: 3.0, d: 3.5, e: 2.5, f: 3.0},
{a: 3.0, b: 3.5, c: 1.5, d: 5.0, e: 3.5, f: 3.0, g: 5.0}
);
// -> 0.396
or
wuzzy.pearson(
{a: 2.5, b: 1},
{o: 3.5, e: 6.0}
);
// -> 1.0
Params:
- Object a - the first object to compare
- Object b - the second object to compare
Return:
- Number returns the pearson correlation for
jaccard(a, b)
Calculates the jaccard index for the two provided arrays.
Examples:
wuzzy.jaccard(
['a', 'b', 'c', 'd', 'e', 'f'],
['a', 'e', 'f']
);
// -> 0.5
or
wuzzy.jaccard(
'abcdef',
'aef'
);
// -> 0.5
or
wuzzy.jaccard(
['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe'],
['babe']
);
// -> 0.16666667
Params:
- String|Array a - the first string/array to compare
- String|Array b - the second string/array to compare
Return:
- Number returns the jaccard index for
tanimoto(a, b)
Calculates the tanimoto distance (weighted jaccard index).
Examples:
wuzzy.tanimoto(
['a', 'b', 'c', 'd', 'd', 'e', 'f', 'f'],
['a', 'e', 'f']
);
// -> 0.375
or
wuzzy.tanimoto(
'abcddeff',
'aef'
);
// -> 0.375
or
wuzzy.tanimoto(
['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe', 'fabe'],
['babe']
);
// -> 0.14285714
Params:
- String|Array a - the first string/array to compare
- String|Array b - the second string/array to compare
Return:
- Number returns the tanimoto distance for