npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

work-request

v2.42.1

Published

Simplified HTTP request client with hppts browserify modifications. All credits go to original request package by Mikeal.

Downloads

3

Readme

Request — Simplified HTTP client

NPM

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows redirects by default.

var request = require('request');
request('http://www.google.com', function (error, response, body) {
  if (!error && response.statusCode == 200) {
    console.log(body) // Print the google web page.
  }
})

Streaming

You can stream any response to a file stream.

request('http://google.com/doodle.png').pipe(fs.createWriteStream('doodle.png'))

You can also stream a file to a PUT or POST request. This method will also check the file extension against a mapping of file extensions to content-types (in this case application/json) and use the proper content-type in the PUT request (if the headers don’t already provide one).

fs.createReadStream('file.json').pipe(request.put('http://mysite.com/obj.json'))

Request can also pipe to itself. When doing so, content-type and content-length are preserved in the PUT headers.

request.get('http://google.com/img.png').pipe(request.put('http://mysite.com/img.png'))

Now let’s get fancy.

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    if (req.method === 'PUT') {
      req.pipe(request.put('http://mysite.com/doodle.png'))
    } else if (req.method === 'GET' || req.method === 'HEAD') {
      request.get('http://mysite.com/doodle.png').pipe(resp)
    }
  }
})

You can also pipe() from http.ServerRequest instances, as well as to http.ServerResponse instances. The HTTP method, headers, and entity-body data will be sent. Which means that, if you don't really care about security, you can do:

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    var x = request('http://mysite.com/doodle.png')
    req.pipe(x)
    x.pipe(resp)
  }
})

And since pipe() returns the destination stream in ≥ Node 0.5.x you can do one line proxying. :)

req.pipe(request('http://mysite.com/doodle.png')).pipe(resp)

Also, none of this new functionality conflicts with requests previous features, it just expands them.

var r = request.defaults({'proxy':'http://localproxy.com'})

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    r.get('http://google.com/doodle.png').pipe(resp)
  }
})

You can still use intermediate proxies, the requests will still follow HTTP forwards, etc.

Proxies

If you specify a proxy option, then the request (and any subsequent redirects) will be sent via a connection to the proxy server.

If your endpoint is an https url, and you are using a proxy, then request will send a CONNECT request to the proxy server first, and then use the supplied connection to connect to the endpoint.

That is, first it will make a request like:

HTTP/1.1 CONNECT endpoint-server.com:80
Host: proxy-server.com
User-Agent: whatever user agent you specify

and then the proxy server make a TCP connection to endpoint-server on port 80, and return a response that looks like:

HTTP/1.1 200 OK

At this point, the connection is left open, and the client is communicating directly with the endpoint-server.com machine.

See the wikipedia page on HTTP Tunneling for more information.

By default, when proxying http traffic, request will simply make a standard proxied http request. This is done by making the url section of the initial line of the request a fully qualified url to the endpoint.

For example, it will make a single request that looks like:

HTTP/1.1 GET http://endpoint-server.com/some-url
Host: proxy-server.com
Other-Headers: all go here

request body or whatever

Because a pure "http over http" tunnel offers no additional security or other features, it is generally simpler to go with a straightforward HTTP proxy in this case. However, if you would like to force a tunneling proxy, you may set the tunnel option to true.

If you are using a tunneling proxy, you may set the proxyHeaderWhiteList to share certain headers with the proxy.

By default, this set is:

accept
accept-charset
accept-encoding
accept-language
accept-ranges
cache-control
content-encoding
content-language
content-length
content-location
content-md5
content-range
content-type
connection
date
expect
max-forwards
pragma
proxy-authorization
referer
te
transfer-encoding
user-agent
via

Note that, when using a tunneling proxy, the proxy-authorization header is never sent to the endpoint server, but only to the proxy server. All other headers are sent as-is over the established connection.

UNIX Socket

request supports the unix:// protocol for all requests. The path is assumed to be absolute to the root of the host file system.

HTTP paths are extracted from the supplied URL by testing each level of the full URL against net.connect for a socket response.

Thus the following request will GET /httppath from the HTTP server listening on /tmp/unix.socket

request.get('unix://tmp/unix.socket/httppath')

Forms

request supports application/x-www-form-urlencoded and multipart/form-data form uploads. For multipart/related refer to the multipart API.

URL-encoded forms are simple.

request.post('http://service.com/upload', {form:{key:'value'}})
// or
request.post('http://service.com/upload').form({key:'value'})

For multipart/form-data we use the form-data library by @felixge. You don’t need to worry about piping the form object or setting the headers, request will handle that for you.

var r = request.post('http://service.com/upload', function optionalCallback (err, httpResponse, body) {
  if (err) {
    return console.error('upload failed:', err);
  }
  console.log('Upload successful!  Server responded with:', body);
})
var form = r.form()
form.append('my_field', 'my_value')
form.append('my_buffer', new Buffer([1, 2, 3]))
form.append('my_file', fs.createReadStream(path.join(__dirname, 'doodle.png')))
form.append('remote_file', request('http://google.com/doodle.png'))

// Just like always, `r` is a writable stream, and can be used as such (you have until nextTick to pipe it, etc.)
// Alternatively, you can provide a callback (that's what this example does — see `optionalCallback` above).

HTTP Authentication

request.get('http://some.server.com/').auth('username', 'password', false);
// or
request.get('http://some.server.com/', {
  'auth': {
    'user': 'username',
    'pass': 'password',
    'sendImmediately': false
  }
});
// or
request.get('http://some.server.com/').auth(null, null, true, 'bearerToken');
// or
request.get('http://some.server.com/', {
  'auth': {
    'bearer': 'bearerToken'
  }
});

If passed as an option, auth should be a hash containing values user || username, pass || password, and sendImmediately (optional). The method form takes parameters auth(username, password, sendImmediately).

sendImmediately defaults to true, which causes a basic authentication header to be sent. If sendImmediately is false, then request will retry with a proper authentication header after receiving a 401 response from the server (which must contain a WWW-Authenticate header indicating the required authentication method).

Note that you can also use for basic authentication a trick using the URL itself, as specified in RFC 1738. Simply pass the user:password before the host with an @ sign.

var username = 'username',
    password = 'password',
    url = 'http://' + username + ':' + password + '@some.server.com';

request({url: url}, function (error, response, body) {
   // Do more stuff with 'body' here
});

Digest authentication is supported, but it only works with sendImmediately set to false; otherwise request will send basic authentication on the initial request, which will probably cause the request to fail.

Bearer authentication is supported, and is activated when the bearer value is available. The value may be either a String or a Function returning a String. Using a function to supply the bearer token is particularly useful if used in conjuction with defaults to allow a single function to supply the last known token at the time or sending a request or to compute one on the fly.

OAuth Signing

// Twitter OAuth
var qs = require('querystring')
  , oauth =
    { callback: 'http://mysite.com/callback/'
    , consumer_key: CONSUMER_KEY
    , consumer_secret: CONSUMER_SECRET
    }
  , url = 'https://api.twitter.com/oauth/request_token'
  ;
request.post({url:url, oauth:oauth}, function (e, r, body) {
  // Ideally, you would take the body in the response
  // and construct a URL that a user clicks on (like a sign in button).
  // The verifier is only available in the response after a user has
  // verified with twitter that they are authorizing your app.
  var access_token = qs.parse(body)
    , oauth =
      { consumer_key: CONSUMER_KEY
      , consumer_secret: CONSUMER_SECRET
      , token: access_token.oauth_token
      , verifier: access_token.oauth_verifier
      }
    , url = 'https://api.twitter.com/oauth/access_token'
    ;
  request.post({url:url, oauth:oauth}, function (e, r, body) {
    var perm_token = qs.parse(body)
      , oauth =
        { consumer_key: CONSUMER_KEY
        , consumer_secret: CONSUMER_SECRET
        , token: perm_token.oauth_token
        , token_secret: perm_token.oauth_token_secret
        }
      , url = 'https://api.twitter.com/1.1/users/show.json?'
      , params =
        { screen_name: perm_token.screen_name
        , user_id: perm_token.user_id
        }
      ;
    url += qs.stringify(params)
    request.get({url:url, oauth:oauth, json:true}, function (e, r, user) {
      console.log(user)
    })
  })
})

Custom HTTP Headers

HTTP Headers, such as User-Agent, can be set in the options object. In the example below, we call the github API to find out the number of stars and forks for the request repository. This requires a custom User-Agent header as well as https.

var request = require('request');

var options = {
	url: 'https://api.github.com/repos/mikeal/request',
	headers: {
		'User-Agent': 'request'
	}
};

function callback(error, response, body) {
	if (!error && response.statusCode == 200) {
		var info = JSON.parse(body);
		console.log(info.stargazers_count + " Stars");
		console.log(info.forks_count + " Forks");
	}
}

request(options, callback);

request(options, callback)

The first argument can be either a url or an options object. The only required option is uri; all others are optional.

  • uri || url - fully qualified uri or a parsed url object from url.parse()
  • qs - object containing querystring values to be appended to the uri
  • method - http method (default: "GET")
  • headers - http headers (default: {})
  • body - entity body for PATCH, POST and PUT requests. Must be a Buffer or String.
  • form - when passed an object or a querystring, this sets body to a querystring representation of value, and adds Content-type: application/x-www-form-urlencoded; charset=utf-8 header. When passed no options, a FormData instance is returned (and is piped to request).
  • auth - A hash containing values user || username, pass || password, and sendImmediately (optional). See documentation above.
  • json - sets body but to JSON representation of value and adds Content-type: application/json header. Additionally, parses the response body as JSON.
  • multipart - (experimental) array of objects which contains their own headers and body attribute. Sends multipart/related request. See example below.
  • followRedirect - follow HTTP 3xx responses as redirects (default: true). This property can also be implemented as function which gets response object as a single argument and should return true if redirects should continue or false otherwise.
  • followAllRedirects - follow non-GET HTTP 3xx responses as redirects (default: false)
  • maxRedirects - the maximum number of redirects to follow (default: 10)
  • encoding - Encoding to be used on setEncoding of response data. If null, the body is returned as a Buffer.
  • pool - A hash object containing the agents for these requests. If omitted, the request will use the global pool (which is set to node's default maxSockets)
  • pool.maxSockets - Integer containing the maximum amount of sockets in the pool.
  • timeout - Integer containing the number of milliseconds to wait for a request to respond before aborting the request
  • proxy - An HTTP proxy to be used. Supports proxy Auth with Basic Auth, identical to support for the url parameter (by embedding the auth info in the uri)
  • oauth - Options for OAuth HMAC-SHA1 signing. See documentation above.
  • hawk - Options for Hawk signing. The credentials key must contain the necessary signing info, see hawk docs for details.
  • strictSSL - If true, requires SSL certificates be valid. Note: to use your own certificate authority, you need to specify an agent that was created with that CA as an option.
  • jar - If true and tough-cookie is installed, remember cookies for future use (or define your custom cookie jar; see examples section)
  • aws - object containing AWS signing information. Should have the properties key, secret. Also requires the property bucket, unless you’re specifying your bucket as part of the path, or the request doesn’t use a bucket (i.e. GET Services)
  • httpSignature - Options for the HTTP Signature Scheme using Joyent's library. The keyId and key properties must be specified. See the docs for other options.
  • localAddress - Local interface to bind for network connections.
  • gzip - If true, add an Accept-Encoding header to request compressed content encodings from the server (if not already present) and decode supported content encodings in the response.
  • tunnel - If true, then always use a tunneling proxy. If false (default), then tunneling will only be used if the destination is https, or if a previous request in the redirect chain used a tunneling proxy.
  • proxyHeaderWhiteList - A whitelist of headers to send to a tunneling proxy.

The callback argument gets 3 arguments:

  1. An error when applicable (usually from http.ClientRequest object)
  2. An http.IncomingMessage object
  3. The third is the response body (String or Buffer, or JSON object if the json option is supplied)

Convenience methods

There are also shorthand methods for different HTTP METHODs and some other conveniences.

request.defaults(options)

This method returns a wrapper around the normal request API that defaults to whatever options you pass in to it.

Note: You can call .defaults() on the wrapper that is returned from request.defaults to add/override defaults that were previously defaulted.

For example:

//requests using baseRequest() will set the 'x-token' header
var baseRequest = request.defaults({
  headers: {x-token: 'my-token'}
})

//requests using specialRequest() will include the 'x-token' header set in
//baseRequest and will also include the 'special' header
var specialRequest = baseRequest.defaults({
  headers: {special: 'special value'}
})

request.put

Same as request(), but defaults to method: "PUT".

request.put(url)

request.patch

Same as request(), but defaults to method: "PATCH".

request.patch(url)

request.post

Same as request(), but defaults to method: "POST".

request.post(url)

request.head

Same as request() but defaults to method: "HEAD".

request.head(url)

request.del

Same as request(), but defaults to method: "DELETE".

request.del(url)

request.get

Same as request() (for uniformity).

request.get(url)

request.cookie

Function that creates a new cookie.

request.cookie('cookie_string_here')

request.jar

Function that creates a new cookie jar.

request.jar()

Examples:

  var request = require('request')
    , rand = Math.floor(Math.random()*100000000).toString()
    ;
  request(
    { method: 'PUT'
    , uri: 'http://mikeal.iriscouch.com/testjs/' + rand
    , multipart:
      [ { 'content-type': 'application/json'
        ,  body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
        }
      , { body: 'I am an attachment' }
      ]
    }
  , function (error, response, body) {
      if(response.statusCode == 201){
        console.log('document saved as: http://mikeal.iriscouch.com/testjs/'+ rand)
      } else {
        console.log('error: '+ response.statusCode)
        console.log(body)
      }
    }
  )

Cookies are disabled by default (else, they would be used in subsequent requests). To enable cookies, set jar to true (either in defaults or options) and install tough-cookie.

var request = request.defaults({jar: true})
request('http://www.google.com', function () {
  request('http://images.google.com')
})

To use a custom cookie jar (instead of request’s global cookie jar), set jar to an instance of request.jar() (either in defaults or options)

var j = request.jar()
var request = request.defaults({jar:j})
request('http://www.google.com', function () {
  request('http://images.google.com')
})

OR

// `npm install --save tough-cookie` before this works
var j = request.jar()
var cookie = request.cookie('your_cookie_here')
j.setCookie(cookie, uri);
request({url: 'http://www.google.com', jar: j}, function () {
  request('http://images.google.com')
})

To inspect your cookie jar after a request

var j = request.jar() 
request({url: 'http://www.google.com', jar: j}, function () {
  var cookie_string = j.getCookieStringSync(uri); // "key1=value1; key2=value2; ..."
  var cookies = j.getCookiesSync(uri); 
  // [{key: 'key1', value: 'value1', domain: "www.google.com", ...}, ...]
})

Debugging

There are at least three ways to debug the operation of request:

  1. Launch the node process like NODE_DEBUG=request node script.js (lib,request,otherlib works too).

  2. Set require('request').debug = true at any time (this does the same thing as #1).

  3. Use the request-debug module to view request and response headers and bodies.