words-n-numbers
v9.1.2
Published
Tokenizing strings of text. Extracting arrays of words and optionally number, emojis, tags, usernames and email addresses from strings. For Node.js and the browser. When you need more than just [a-z] regular expressions.
Downloads
1,000
Maintainers
Readme
Words'n'numbers
Tokenizing strings of text. Extracting arrays of words and optionally number, emojis, tags, usernames and email addresses from strings. For Node.js and the browser. When you need more than just [a-z] regular expressions. Part of document processing for search-index and nowsearch.xyz.
Inspired by extractwords
Breaking change
From v8.0.0
- emojis
-regular expression now extracts single emojis, so no more "words" formed by several emojis. This because each emoji in a sense are words. You can still make a custom regular expression to grab several emojis in a row as one item with const customEmojis = '\\p{Emoji_Presentation}'
and then use it as your custom regex.
Meaning that instead of:
extract('A ticket to 大阪 costs ¥2000 👌😄 😢', { regex: emojis})
// ['👌😄', '😢']
...you will get:
extract('A ticket to 大阪 costs ¥2000 👌😄 😢', { regex: emojis})
// ['👌', '😄', '😢']
Initiating
CJS
const { extract, words, numbers, emojis, tags, usernames, email } = require('words-n-numbers')
// extract, words, numbers, emojis, tags, usernames, email available
ESM
import { extract, words, numbers, emojis, tags, usernames, email } from 'words-n-numbers'
// extract, words, numbers, emojis, tags, usernames, email available
Browser
<script src="https://cdn.jsdelivr.net/npm/words-n-numbers/dist/words-n-numbers.umd.min.js"></script>
<script>
//wnn.extract, wnn.words, wnn.numbers, wnn.emojis, wnn.tags, wnn.usernames, wnn.email available
</script>
Browser demo
A simple browser demo of wnn to show how it works.
Use
The default regex should catch every unicode character from for every language. Default regex flags are giu
. emojisCustom
-regex won't work with the u
-flag (unicode).
Only words
const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords)
// returns ['A', 'dollars', 'baby']
Only words, converted to lowercase
const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords, { toLowercase: true })
// returns ['a', 'dollars', 'baby']
Combining predefined regex for words and numbers, converted to lowercase
const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords, { regex: [words, numbers], toLowercase: true })
// returns ['a', '1000000', 'dollars', 'baby']
Combining predefined regex for words and emoticons, converted to lowercase
const stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [words, emojis], toLowercase: true })
// returns [ 'A', 'ticket', 'to', '大阪', 'costs', '👌', '😄', '😢' ]
Combining predefined regex for numbers and emoticons
const stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [numbers, emojis], toLowercase: true })
// returns [ '2000', '👌', '😄', '😢' ]
Combining predefined regex for words, numbers and emoticons, converted to lowercase
cons stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [words, numbers, emojis], toLowercase: true })
// returns [ 'a', 'ticket', 'to', '大阪', 'costs', '2000', '👌', '😄', '😢' ]
Predefined regex for #tags
const stringOfWords = 'A #49ticket to #大阪 or two#tickets costs ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: tags, toLowercase: true })
// returns [ '#49ticket', '#大阪' ]
Predefined regex for @usernames
const stringOfWords = 'A #ticket to #大阪 costs [email protected], @alice and @美林 ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: usernames, toLowercase: true })
// returns [ '@alice123', '@美林' ]
Predefined regex for email addresses
const stringOfWords = 'A #ticket to #大阪 costs [email protected], [email protected], [email protected] and @美林 ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: email, toLowercase: true })
// returns [ '[email protected]', '[email protected]', '[email protected]' ]
Predefined custom regex for all Unicode emojis
const stringOfWords = 'A #ticket to #大阪 costs [email protected], [email protected], [email protected] and @美林 ¥2000 👌😄😄 😢👩🏽🤝👨🏻 👩🏽🤝👨🏻'
extract(stringOfWords, { regex: emojisCustom, flags: 'g' })
// returns [ '👌', '😄', '😄', '😢', '👩🏽🤝👨🏻', '👩🏽🤝👨🏻' ]
Custom regex
Some characters needs to be escaped, like \
and '
. And you escape it with a backslash - \
.
const stringOfWords = 'This happens at 5 o\'clock !!!'
extract(stringOfWords, { regex: '[a-z\'0-9]+' })
// returns ['This', 'happens', 'at', '5', 'o\'clock']
API
Extract function
Returns an array of words and optionally numbers.
extract(stringOfText, \<options-object\>)
Options object
{
regex: 'custom or predefined regex', // defaults to words
toLowercase: [true / false] // defaults to false
flags: 'gmixsuUAJD' // regex flags, defaults to giu - /[regexPattern]/[regexFlags]
}
Order of combined regexes
You can add an array of different regexes or just a string. If you add an array, they will be joined with a |
-separator, making it an OR-regex. Put the email
, usernames
and tags
before words
to get the extraction right.
// email addresses before usernames before words can give another outcome than
extract(oldString, { regex: [email, usernames, words] })
// than words before usernames before email addresses
extract(oldString, { regex: [words, usernames, email] })
Predefined regexes
words // only words, any language <-- default
numbers // only numbers
emojis // only emojis
emojisCustom // only emojis. Works with the `g`-flag, not `giu`. Based on custom emoji extractor from https://github.com/mathiasbynens/rgi-emoji-regex-pattern
tags // #tags (any language
usernames // @usernames (any language)
email // email addresses. Most valid addresses,
// but not to be used as a validator
Flags for regexes
All but one regex uses the giu
-flag. The one that doesn't is the emojisCustom
that will need only a g
-flag. emojisCustom
is added because the standard emojis
regex based on \\p{Emoji_Presentation}
isn't able to grab all emojis. When browsers support p\{RGI_emoji} under a
giu`-flag the library will be changed.
Languages supported
Supports most languages supported by stopword, and others too. Some languages like Japanese and Chinese simplified needs to be tokenized. May add tokenizers at a later stage.
PR's welcome
PR's and issues are more than welcome =)