word2vector
v2.2.1
Published
a word2vector interface for nodejs
Downloads
111
Maintainers
Readme
word2vector NodeJS Interface
This is a Node.js interface for Google's word2vector. Here is an example of how to load large model like GoogleNews-vectors-negative300.bin by this package.
Supports both binary model and raw text model.
Installation
Linux, Unix OS are supported. Install it via npm:
npm install word2vector --save
In Node.js, require the module as below:
var w2v = require( 'word2vector' );
API Document:
Overview
train load getVector getVectors getSimilarWords getNeighbors similarity substract add
w2v.train( trainFile, modelFile, options, callback )
Click here to see example TrainFile format. Example:
var w2v = require("./lib");
var trainFile = "./data/train.data",
modelFile = "./data/test.model.bin";
w2v.train(trainFile, modelFile, {
cbow: 1, // use the continuous bag of words model //default
size: 10, // sets the size (dimension) of word vectors // default 100
window: 8, // sets maximal skip length between words // default 5
binary: 1, // save the resulting vectors in binary mode // default off
negative: 25, // number of negative examples; common values are 3 - 10 (0 = not used) // default 5
hs: 0, // 1 = use Hierarchical Softmax // default 0
sample: 1e-4,
threads: 20,
iter: 15,
minCount: 1, // This will discard words that appear less than *minCount* times // default 5
logOn: false // sets whether any output should be printed to the console // default false
});
w2v.load( modelFile,?readType = "")
| Params | Description | Default Value | | ------------- |-------------| -------------| | readType | Model format, pass "utf-8" if using a raw text model. | "bin" |
var w2v = require("../lib");
var modelFile = "./test.model.bin";
w2v.load( modelFile );
// console.log(w2v.getSimilarWordsWords());
w2v.getVector(word="word")
| Params | Description | Default Value | | ------------- |-------------| -------------| | word | String to be searched. | "word" |
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getVector("孫悟空"));
console.log(w2v.getVector("李洵"));
Sample Output:
// Array Type Only
[ 0.104406,
-0.160019,
-0.604506,
-0.622804,
0.039482,
-0.120058,
0.073555,
0.05646,
0.099059,
-0.419282 ]
null // Return null if this word is not in model.
w2v.getVectors(words=["word1", "word2"], ?options = {})
| Params | Description | Default Value | | ------------- |-------------| -------------| | words | Array of strings to be searched. | "word" |
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getVectors(["孫悟空", "李洵"]));
Sample Output:
[ { word: '孫悟空',
vector:
[ 0.104406,
-0.160019,
-0.604506,
-0.622804,
0.039482,
-0.120058,
0.073555,
0.05646,
0.099059,
-0.419282 ] },
{ word: '李洵', vector: null } ]
// this will trigger a error log in console:
//'李洵' is not found in the model.
w2v.getSimilarWords(word = "word", ?options = {})
Return 40ish words that is similar to "word".
| Params | Description | Default Value | | ------------- |-------------| -------------| | word | Strings to be searched. | "word" | | options.N | return topN results | Array |
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getSimilarWords("唐三藏"));
console.log(w2v.getSimilarWords("李洵"));
Sample Output:
// Array Type
[ { word: '孫悟空', similarity: 0.974369 },
{ word: '吳承恩', similarity: 0.96686 },
{ word: '林黛玉', similarity: 0.966664 },
{ word: '北地', similarity: 0.96264 },
{ word: '賈寶玉', similarity: 0.962137 },
{ word: '楚霸王', similarity: 0.955795 },
{ word: '梁山泊', similarity: 0.932804 },
{ word: '濮陽', similarity: 0.927542 },
{ word: '黃天霸', similarity: 0.927459 },
{ word: '英雄豪傑', similarity: 0.921575 }]
// Return empty [] if this word is not in model.
'李洵' is not found in the model.
[]
getNeighbors(vector, ?options = {})
| Params | Description | Default Value | | ------------- |-------------| -------------| | vector | Vector to be searched. | "word" | | options.N | return topN results | Array |
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.getNeighbors(w2v.getVector("唐三藏"), {N: 9});
// These are equal to use w2v.getSimilarWords("唐三藏");
console.log(a);
Sample Output1:
[ { word: '唐三藏', similarity: 0.9999993515200001 },
{ word: '孫悟空', similarity: 0.974368825898 },
{ word: '吳承恩', similarity: 0.966859435824 },
{ word: '林黛玉', similarity: 0.966663471323 },
{ word: '北地', similarity: 0.962639240211 },
{ word: '賈寶玉', similarity: 0.9621371820049999 },
{ word: '楚霸王', similarity: 0.9557946924850002 },
{ word: '梁山泊', similarity: 0.9328033548890001 },
{ word: '濮陽', similarity: 0.9275417727409999 } ]
{ '唐三藏': 0.9999993515200001,
'孫悟空': 0.974368825898,
'吳承恩': 0.966859435824,
'林黛玉': 0.966663471323,
'北地': 0.962639240211,
'賈寶玉': 0.9621371820049999,
'楚霸王': 0.9557946924850002,
'梁山泊': 0.9328033548890001,
'濮陽': 0.9275417727409999 }
w2v.similarity(word1 = "word1", word2 = "word2")
w2v.similarity(vector1 = [], word2 = "word2")
w2v.similarity(word1 = "word1", vector2 = [])
w2v.similarity(vector1 = [], vector2 = [])
| Params | Description | Default Value | | ------------- |-------------| -------------| | word1 | First Strings to be compared. | No default value | | word2 | Second Strings to be compared. | No default value | | vector1 | First Vector to be compared. | No default value | | vector2 | Second Vector to be compared. | No default value |
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.similarity("唐三藏", "孫悟空"); // 0.974368825898
console.log(a);
var b = w2v.similarity("唐三藏", "李洵"); // 0.974368825898
// same as var b = w2v.similarity("唐三藏", w2v.getVector("李洵"));
// same as var b = w2v.similarity(w2v.getVector("唐三藏"), "李洵");
// same as var b = w2v.similarity(w2v.getVector("唐三藏"), w2v.getVector("李洵"));
console.log(b);
Sample Output:
0.974368825898
// '李洵' is not found in the model. // error alert in console
false
w2v.substract(word1 = "word1", word2 = "word2")
w2v.substract(vector1 = [], word2 = "word2")
w2v.substract(word1 = "word1", vector2 = [])
w2v.substract(vector1 = [], vector2 = [])
| Params | Description | Default Value | | ------------- |-------------| -------------| | word1 | Subtrahend | No default value | | word2 | Minuend | No default value |
Example:
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.substract("孫悟空", "孫悟空");
console.log(a);
Sample Output:
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
w2v.add(word1 = "word1", word2 = "word2")
w2v.add(vector1 = [], word2 = "word2")
w2v.add(word1 = "word1", vector2 = [])
w2v.add(vector1 = [], vector2 = [])
| Params | Description | Default Value | | ------------- |-------------| -------------| | word1 | Summand | No default value | | word2 | Addend | No default value |
Example:
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.add("孫悟空", "孫悟空");
var b = w2v.getVector("孫悟空");
console.log(a);
console.log(b);
Sample Output:
[ 0.208812,
-0.320038,
-1.209012,
-1.245608,
0.078964,
-0.240116,
0.14711,
0.11292,
0.198118,
-0.838564 ]
[ 0.104406,
-0.160019,
-0.604506,
-0.622804,
0.039482,
-0.120058,
0.073555,
0.05646,
0.099059,
-0.419282 ]