npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

upscalejs

v1.1.0

Published

Upscale images using super resolution AI models

Downloads

50

Readme

upscalejs

Image upscaling using super resolution AI models.

Usage

import { Upscaler } from "upscalejs"

const upscaler = new Upscaler()
const result = await upscaler.upscale(bitmap)
const canvas = document.createElement("canvas")
canvas.width = result.width
canvas.height = result.height
canvas.getContext("2d")?.putImageData(result, 0, 0)

Node

const fs = require("fs")
const { Upscaler, canvas } = require("upscalejs")

const upscaler = new Upscaler({
  base: "./node_modules/upscalejs/dist/"
})

const upscale = async (input, output) => {
  const img = await canvas.loadImage(input)
  const result = await upscaler.upscale(img)
  const write_stream = fs.createWriteStream(output)
  const upscale_canvas = canvas.createCanvas(result.width, result.height)
  upscale_canvas.getContext("2d").putImageData(result, 0, 0)
  const jpeg_stream = upscale_canvas.createJPEGStream()
  jpeg_stream.pipe(write_stream)
}

upscale("image.jpg", "upscaled.jpg")

You will need to copy the models and onnxruntime wasm files to your public folder e.g.:

const CopyPlugin = require("copy-webpack-plugin");

module.exports = {
  chainWebpack: config => {
    config
      .plugin("copy-webpack-plugin")
      .use(CopyPlugin)
      .tap(() => {
        return [{
          patterns: [
            {
              from: "./node_modules/upscalejs/dist/js/ort-*.wasm",
              to: "js/[name][ext]",
            },
            {
              from: "./node_modules/upscalejs/dist/models/*.onnx",
              to: "models/[name][ext]",
            }
          ],
        }]
      })
   }
}

Current available models were trained in anime images and are based on work done in the Real-CUGAN project.

Project Setup

npm install

Compile and Hot-Reload for Development

npm run dev

Type-Check, Compile and Minify for Production

npm run build

Lint with ESLint

npm run lint

Test with Vitest

npm run test