npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

underline_f

v0.0.11

Published

a _F thing

Downloads

2

Readme

_F

Functional chaining in js.

Usage

  1. bower install Hypercubed/_F
  2. Include the _F.js script into your app. By default should be at bower_components/_F/_F.js

Testing

Install npm and bower dependencies:

npm install
bower install
npm test

Summary of API

Hypercubed/_F is simply global shortcut for composable "d3 style" data accessors functions. For example:

Accessors

| _F | Pure JS equivalent | | ----------------------- | ---------------------------------------------- | | _F() | function(d) { return d; } | | _F('prop') | function(d) { return d.prop; } | | _F('prop.prop') | function(d) { return d.prop.prop; } | | _F('prop.prop.prop') | function(d) { return d.prop.prop.prop; } | | _F(number) | function(d) { return d[number]; } | | _F('$index') | function(d, i) { return i; } | | _F('$this') | function() { return this; } |

Example

var data = [ { firstname: 'John', lastname: 'Smith', age: 51 }, /* ... */ ];
var _firstname = _F('firstname');

data.map(_firstname);  // Returns a list of first names

Operators

| _F | Pure JS equivalent | | ----------------------- | ----------------------------------------------------- | | _F('prop').eq(value) | function(d) { return d.prop == value; } | | _F('prop').neq(value) | function(d) { return d.prop !== value; } | | _F('prop').gt(value) | function(d) { return d.prop > value; } | | _F('prop').lt(value) | function(d) { return d.prop < value; } | | _F('prop').gte(value) | function(d) { return d.prop >= value; } | | _F('prop').lte(value) | function(d) { return d.prop <= value; } | | _F('prop').in(array) | function(d) { return array.indexOf(d) > -1; } | | _F('prop').has(value) | function(d) { return d.prop.indexOf(value) > -1; } |

Example

var _johns = _firstname.eq('John');

data.filter(_johns);  // returns a list of John's

Chaining

| _F | Pure JS equivalent | | ----------------------------------------- | ----------------------------------------------------------------- | | _F('prop').gt(value).and(fn) | function(d) { return (d.prop > value) && fn(d); } | | _F('prop').gt(value).or(fn) | function(d) { return (d.prop > value) || fn(d); } | | _F('prop').gt(value).not(fn) | function(d) { return (d.prop > value) && !fn(d); } | | _F('prop').gt(value).and().lt(valueB) | function(d) { return (d.prop > value) && (d.prop < valueB); } | | _F('prop').lt(value).or().gt(valueB) | function(d) { return (d.prop < value) || (d.prop > valueB); } | | _F('prop').gt(value).not().eq(valueB) | function(d) { return (d.prop > value) && !(d.prop == valueB); } |

Example

var _age = _F('age');
var _twenties = _age.gte(20).and().lt(30);

data.filter(_johns.and(_twenties));  // returns a list of John's in their twenties

Sorting

| _F | Pure JS equivalent | | ------------------------- | --------------------------------------------- | | _F('prop').order(fn) | function(a,b) { return fn(a.prop,b.prop); } | | _F('prop').order().asc | function(a,b) { return fn(ascending); } | | _F('prop').order().desc | function(a,b) { return fn(decending); } |

Example

data.filter(_johns.and(_twenties)).sort(_age.order().asc);  // returns a list of John's in their twenties sorted by age in ascending order

Why?

In JavaScript, especially when using d3, we often write accessor functions like this:

function(d) { return d.value; }

This simple function returns the value of the value key when an object is pass to it. For example in the map function:

values = data.map(function(d) { return d.value; });

This is lightweight, simple, and readable. There is nothing wrong with it. Sometimes, however, in order to avoid repeating ourselves so we crete a reusable accessor function like this:

var _value = function(d) { return d.value; };
values = data.map(_value);

Now imagine the object also has a year key whose values are date objects. We may want to filter like this:

var _value = function(d) { return d.value; };
var _year_filter = function(d) { return d.year >= new Date('1980 Jan 1'); };
values = data.filter(_year_filter).map(_value);

However, this has a couple of slight drawbacks. First of all you will need to create a new filter every time the date changes; also the Date constructor is called for every element in the data array. A better approach is an accessor factory:

var _year_filter = function(date) {
  return function(d) { return d.year >= date; };
}

var _filter = _year_filter(new Date('1990 Jan 1'));
values = data.filter(_filter).map(_value);

It's a little ugly but here the Date constructor is only called once and the _year_filter function returns the accessor. An new accessor can be created any time by calling _year_filter

Now what if we want to filter between two dates. We can do modify our accessor factory:

var _year_filter = function(dateA, dateB) {
  return function(d) { return d.year >= new Date(dateA) && d.year < new Date(dateB); };
}

but let's say that you have multidimensional data where dateA and dataB change independently. You might be tempted to do something like this:

var _year_gte = function(dateA) {
  return function(d) { return d.year >= dateA; };
}

var _year_lt = function(dateB) {
  return function(d) { return d.year < dateB; };
}

_year_filter1 = _year_gte(new Date('1980 Jan 1'));
_year_filter2 = _year_lt(new Date('1990 Jan 1'));

values = data
  .filter(_year_filter1)
  .filter(_year_filter2)
  .map(_value);

Ok, no we are getting ridiculous. The date constructor is not that expensive. But you can imagine a situation where the values for filters could be very expensive. For example based on aggregated statistics or reading from the DOM.

Ok, at this point let me introduce _F. _F is simply a shortcut for all this. For example:

var _value = _F('value');
values = data.map(_value);

The value returned from _F() in this case is simply the accessor function function(d) { return d.value; }.

Interesting. How about this:

var _value = _F('value');
var _year_filter = _F('year').gte(new Date('1980 Jan 1'));
values = data.filter(_year_filter).map(_value);

_F('year').gte(somevalue) is essentially a shortcut for function(d) { return d.year >= somevalue; }.

It gets better:

var _value = _F('value');

var _year_filter =
  _F('year')
    .gte(new Date('1980 Jan 1'))
    .and().lt(new Date('1990 Jan 1'));

values = data.filter(_year_filter).map(_value);

or how about this:

var _value = _F('value');
var _value_filter = _value.gt(10);

var _year = _F('year');
var _year_filter =
  _year
    .gte(new Date('1980 Jan 1'))
    .and().lt(new Date('1990 Jan 1'));

var _filter = _value_filter.and(_year_filter);

values = data.filter(_filter).map(_value);

Pretty neat?

Acknowledgments

License

Copyright (c) 2014+ Jayson Harshbarger MIT