npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

umap-js

v1.4.0

Published

JavaScript implementation of UMAP

Downloads

59,622

Readme

Build Status

UMAP-JS

This is a JavaScript reimplementation of UMAP from the python implementation found at https://github.com/lmcinnes/umap.

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.

There are a few important differences between the python implementation and the JS port.

  • The optimization step is seeded with a random embedding rather than a spectral embedding. This gives comparable results for smaller datasets. The spectral embedding computation relies on efficient eigenvalue / eigenvector computations that are not easily done in JS.
  • There is no specialized functionality for angular distances or sparse data representations.

Usage

Installation

yarn add umap-js

Synchronous fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const embedding = umap.fit(data);

Asynchronous fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const embedding = await umap.fitAsync(data, epochNumber => {
  // check progress and give user feedback, or return `false` to stop
});

Step-by-step fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const nEpochs = umap.initializeFit(data);
for (let i = 0; i < nEpochs; i++) {
  umap.step();
}
const embedding = umap.getEmbedding();

Supervised projection using labels

import { UMAP } from 'umap-js';

const umap = new UMAP();
umap.setSupervisedProjection(labels);
const embedding = umap.fit(data);

Transforming additional points after fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
umap.fit(data);
const transformed = umap.transform(additionalData);

Parameters

The UMAP constructor can accept a number of hyperparameters via a UMAPParameters object, with the most common described below. See umap.ts for more details.

| Parameter | Description | default | | ------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- | | nComponents | The number of components (dimensions) to project the data to | 2 | | nEpochs | The number of epochs to optimize embeddings via SGD | (computed automatically) | | nNeighbors | The number of nearest neighbors to construct the fuzzy manifold | 15 | | minDist | The effective minimum distance between embedded points, used with spread to control the clumped/dispersed nature of the embedding | 0.1 | | spread | The effective scale of embedded points, used with minDist to control the clumped/dispersed nature of the embedding | 1.0 | | random | A pseudo-random-number generator for controlling stochastic processes | Math.random | | distanceFn | A custom distance function to use | euclidean |

const umap = new UMAP({
  nComponents: 2,
  nEpochs: 400,
  nNeighbors: 15,
});

Testing

umap-js uses jest for testing.

yarn test

This is not an officially supported Google product