udsv
v0.6.0
Published
A small, fast CSV parser
Downloads
7,688
Readme
𝌠 μDSV
A faster CSV parser in 5KB (min) (MIT Licensed)
Introduction
uDSV is a fast JS library for parsing well-formed CSV strings, either from memory or incrementally from disk or network. It is mostly RFC 4180 compliant, with support for quoted values containing commas, escaped quotes, and line breaks¹. The aim of this project is to handle the 99.5% use-case without adding complexity and performance trade-offs to support the remaining 0.5%.
¹ Line breaks (\n
,\r
,\r\n
) within quoted values must match the row separator.
Features
What does uDSV pack into 5KB?
- RFC 4180 compliant
- Incremental or full parsing, with optional accumulation
- Auto-detection and customization of delimiters (rows, columns, quotes, escapes)
- Schema inference and value typing:
string
,number
,boolean
,date
,json
- Defined handling of
''
,'null'
,'NaN'
- Whitespace trimming of values & skipping empty lines
- Multi-row header skipping and column renaming
- Multiple outputs: arrays (tuples), objects, nested objects, columnar arrays
Of course, most of these are table stakes for CSV parsers :)
Performance
Is it Lightning Fast™ or Blazing Fast™?
No, those are too slow! uDSV has Ludicrous Speed™; it's faster than the parsers you recognize and faster than those you've never heard of.
Most CSV parsers have one happy/fast path -- the one without quoted values, without value typing, and only when using the default settings & output format. Once you're off that path, you can generally throw any self-promoting benchmarks in the trash. In contrast, uDSV remains fast with any datasets and all options; its happy path is every path.
On a Ryzen 7 ThinkPad, Linux v6.4.11, and NodeJS v20.6.0, a diverse set of benchmarks show a 1x-5x performance boost relative to the popular, proven-fast, Papa Parse.
For way too many synthetic and real-world benchmarks, head over to /bench...and don't forget your coffee!
┌───────────────────────────────────────────────────────────────────────────────────────────────┐
│ uszips.csv (6 MB, 18 cols x 34K rows) │
├────────────────────────┬────────┬─────────────────────────────────────────────────────────────┤
│ Name │ Rows/s │ Throughput (MiB/s) │
├────────────────────────┼────────┼─────────────────────────────────────────────────────────────┤
│ uDSV │ 782K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 140 │
│ csv-simple-parser │ 682K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 122 │
│ achilles-csv-parser │ 469K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 83.8 │
│ d3-dsv │ 433K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 77.4 │
│ csv-rex │ 346K │ ░░░░░░░░░░░░░░░░░░░░░░░░░ 61.9 │
│ PapaParse │ 305K │ ░░░░░░░░░░░░░░░░░░░░░░ 54.5 │
│ csv42 │ 296K │ ░░░░░░░░░░░░░░░░░░░░░ 52.9 │
│ csv-js │ 285K │ ░░░░░░░░░░░░░░░░░░░░░ 50.9 │
│ comma-separated-values │ 258K │ ░░░░░░░░░░░░░░░░░░░ 46.1 │
│ dekkai │ 248K │ ░░░░░░░░░░░░░░░░░░ 44.3 │
│ CSVtoJSON │ 245K │ ░░░░░░░░░░░░░░░░░░ 43.8 │
│ csv-parser (neat-csv) │ 218K │ ░░░░░░░░░░░░░░░░ 39 │
│ ACsv │ 218K │ ░░░░░░░░░░░░░░░░ 39 │
│ SheetJS │ 208K │ ░░░░░░░░░░░░░░░ 37.1 │
│ @vanillaes/csv │ 200K │ ░░░░░░░░░░░░░░░ 35.8 │
│ node-csvtojson │ 165K │ ░░░░░░░░░░░░ 29.4 │
│ csv-parse/sync │ 125K │ ░░░░░░░░░ 22.4 │
│ @fast-csv/parse │ 78.2K │ ░░░░░░ 14 │
│ jquery-csv │ 55.1K │ ░░░░ 9.85 │
│ but-csv │ --- │ Wrong row count! Expected: 33790, Actual: 1 │
│ @gregoranders/csv │ --- │ Invalid CSV at 1:109 │
│ utils-dsv-base-parse │ --- │ unexpected error. Encountered an invalid record. Field 17 o │
└────────────────────────┴────────┴─────────────────────────────────────────────────────────────┘
Installation
npm i udsv
or
<script src="./dist/uDSV.iife.min.js"></script>
API
A 150 LoC uDSV.d.ts TypeScript def.
Basic Usage
import { inferSchema, initParser } from 'udsv';
let csvStr = 'a,b,c\n1,2,3\n4,5,6';
let schema = inferSchema(csvStr);
let parser = initParser(schema);
// native format (fastest)
let stringArrs = parser.stringArrs(csvStr); // [ ['1','2','3'], ['4','5','6'] ]
// typed formats (internally converted from native)
let typedArrs = parser.typedArrs(csvStr); // [ [1, 2, 3], [4, 5, 6] ]
let typedObjs = parser.typedObjs(csvStr); // [ {a: 1, b: 2, c: 3}, {a: 4, b: 5, c: 6} ]
let typedCols = parser.typedCols(csvStr); // [ [1, 4], [2, 5], [3, 6] ]
let stringObjs = parser.stringObjs(csvStr); // [ {a: '1', b: '2', c: '3'}, {a: '4', b: '5', c: '6'} ]
Nested/deep objects can be re-constructed from column naming via .typedDeep()
:
// deep/nested objects (from column naming)
let csvStr2 = `
_type,name,description,location.city,location.street,location.geo[0],location.geo[1],speed,heading,size[0],size[1],size[2]
item,Item 0,Item 0 description in text,Rotterdam,Main street,51.9280712,4.4207888,5.4,128.3,3.4,5.1,0.9
`.trim();
let schema2 = inferSchema(csvStr2);
let parser2 = initParser(schema2);
let typedDeep = parser2.typedDeep(csvStr2);
/*
[
{
_type: 'item',
name: 'Item 0',
description: 'Item 0 description in text',
location: {
city: 'Rotterdam',
street: 'Main street',
geo: [ 51.9280712, 4.4207888 ]
},
speed: 5.4,
heading: 128.3,
size: [ 3.4, 5.1, 0.9 ],
}
]
*/
CSP Note:
uDSV uses dynamically-generated functions (via new Function()
) for its .typed*()
methods.
These functions are lazy-generated and use JSON.stringify()
code-injection guards, so the risk should be minimal.
Nevertheless, if you have strict CSP headers without unsafe-eval
, you won't be able to take advantage of the typed methods and will have to do the type conversion from the string tuples yourself.
Incremental / Streaming
uDSV has no inherent knowledge of streams.
Instead, it exposes a generic incremental parsing API to which you can pass sequential chunks.
These chunks can come from various sources, such as a Web Stream or Node stream via fetch()
or fs
, a WebSocket, etc.
Here's what it looks like with Node's fs.createReadStream():
let stream = fs.createReadStream(filePath);
let parser = null;
let result = null;
stream.on('data', (chunk) => {
// convert from Buffer
let strChunk = chunk.toString();
// on first chunk, infer schema and init parser
parser ??= initParser(inferSchema(strChunk));
// incremental parse to string arrays
parser.chunk(strChunk, parser.stringArrs);
});
stream.on('end', () => {
result = parser.end();
});
...and Web streams in Node, or Fetch's Response.body:
let stream = fs.createReadStream(filePath);
let webStream = Stream.Readable.toWeb(stream);
let textStream = webStream.pipeThrough(new TextDecoderStream());
let parser = null;
for await (const strChunk of textStream) {
parser ??= initParser(inferSchema(strChunk));
parser.chunk(strChunk, parser.stringArrs);
}
let result = parser.end();
The above examples show accumulating parsers -- they will buffer the full result
into memory.
This may not be something you want (or need), for example with huge datasets where you're looking to get the sum of a single column, or want to filter only a small subset of rows.
To bypass this auto-accumulation behavior, simply pass your own handler as the third argument to parser.chunk()
:
// ...same as above
let sum = 0;
let reducer = (rows) => {
for (let i = 0; i < rows.length; i++) {
sum += rows[i][3]; // sum fourth column
}
};
for await (const strChunk of textStream) {
parser ??= initParser(inferSchema(strChunk));
parser.chunk(strChunk, parser.typedArrs, reducer); // typedArrs + reducer
}
parser.end();
TODO?
- handle #comment rows
- emit empty-row and #comment events?