typegrad
v0.1.4
Published
A simple scalar autograd library for TypeScript
Downloads
2
Readme
TypeGrad
TypeGrad is a simple scalar autograd library in TypeScript. It is designed to be easy to use and understand, and to be a good starting point for learning about autograd. Based on the micrograd library by Andrej Karpathy
Note: This library is not intended for production use. It is not optimized for speed, and it does not support GPU acceleration. Try Shumai by Facebook Research or TensorFlow.js for GPU acceleration and vectorization.
Installation
npm install typegrad
Usage
import { v } from "typegrad";
const x = v(3, "x");
const y = v(4, "y");
// z = 4x^3 + 2y^2
let z = x
.pow(3)
.mul(v(4))
.add(y.pow(2).mul(v(2)));
console.log(z.toString()); // Value(140.0 +)
z.backward(); // compute gradients for all variables with respect to z
z.printComputationGraph();
/*
Value(140.0 + grad: 1.0)
Value(108.0 * grad: 1.0)
Value(27.0 ^3 grad: 4.0)
Value(3.0 (x) grad: 108.0)
Value(4.0 grad: 27.0)
Value(32.0 * grad: 1.0)
Value(16.0 ^2 grad: 2.0)
Value(4.0 (y) grad: 16.0)
Value(2.0 grad: 16.0)
*/
console.log(`dz/dx at x=3: ${x.grad}`); // dz/dx at x=3: 108
console.log(`dz/dy at y=4: ${y.grad}`); // dz/dy at y=4: 16
There are also some implementations of feedforward neural networks in TypeGrad, based on composition of the available operations.
ANN Example
Implementing http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex3/ex3.html in TypeGrad
data.ts
export const data = {
x: [
[2.104e3, 3.0],
[1.6e3, 3.0],
// ... 45 more rows
],
y: [
[3.999e5],
[3.299e5],
// ... 45 more rows
],
};
index.ts
import * as tg from "typegrad";
import { data } from "./data.js";
// Z-score standardization
const {
standardized: xStandardized,
mean: xMean,
std: xStd,
} = tg.standardizeNumbers(data.x);
const {
standardized: yStandardized,
mean: yMean,
std: yStd,
} = tg.standardizeNumbers(data.y);
// Convert to TypeGrad Values
const x = tg.fromMatrix(xStandardized);
const y = tg.fromMatrix(yStandardized);
// A single neuron with 2 inputs and identity activation (y = x)
// const model = tg.neuron(2, tg.Activations.Identity);
// Or A single layer with 2 inputs, 1 output, and identity activation (y = x)
// const model = tg.layer(2, 1, tg.Activations.Identity);
// Or A Multi-Layer Perceptron with 2 inputs and 1 layer with 1 output with identity activation
// const model = tg.MLP(2, [[1, tg.Activations.Identity]]);
// Or A Sequential module with one linear layer with 2 inputs and 1 output with identity activation
const model = tg.sequential(tg.layer(2, 1, tg.Activations.Identity));
// Stochastic Gradient Descent with learning rate 0.1
const optimizer = tg.SGD({ lr: 0.1, model });
// Training loop for 100 iterations
for (let i = 0; i < 100; ++i) {
// runBatch run an array of model inputs
const yPreds = tg.runBatch(model, x);
const loss = tg.meanSquaredError(tg.getValues(yPreds), tg.getValues(y));
optimizer.zeroGrad();
loss.backward();
optimizer.step();
if (i % 10 === 0 || i === 99) {
console.log(`Loss: ${loss.value}`);
}
}
console.log("Predictions:");
const yPred = model.forward([
new tg.Value((1650 - xMean[0]) / xStd[0]),
new tg.Value((3 - xMean[1]) / xStd[1]),
]);
// yPred.value in case a single neuron was used, rest return an array of values
const yPredActual = yPred[0].value * yStd[0] + yMean[0];
console.log(`x: 1650, 3, y: 293081, yPred: ${yPredActual}`);
$ node index.js
Loss: 2.5167192548196677
Loss: 0.38943873428395853
Loss: 0.28577348426944876
Loss: 0.27001394631673464
Loss: 0.26752369202704895
Loss: 0.2671292383032242
Loss: 0.26706674630712984
Loss: 0.2670568457813185
Loss: 0.2670552772524149
Loss: 0.26705502875217013
Loss: 0.26705499088197726
Predictions:
x: 1650, 3, y: 293081, yPred: 293081.9612040153