npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ts-expression

v1.2.2

Published

Constructor of TypeScript symbolic expressions.

Downloads

24

Readme

import { car, cdr, cons } from 'ts-expression';
import type { Cons } from 'ts-expression/cons';

type X = number;
type Y = number;
type Point = Cons<X, Y>;

const makePoint = (x: X, y: Y): Point => cons(x, y);

const getX = (point: Point) => car(point);
const getY = (point: Point) => cdr(point);

const getSymmetricalPoint = (point: Point) => {
  const x = getX(point);
  const y = getY(point);

  return makePoint(-x, -y);
};

const calculateDistance = (point1: Point, point2: Point) => {
  const [x1, y1] = [getX(point1), getY(point1)];
  const [x2, y2] = [getX(point2), getY(point2)];

  return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
};

//

const point1 = makePoint(3, 4);
const point2 = makePoint(0, 0);

getX(point1); // 3
getY(point2); // 0
getSymmetricalPoint(makePoint(1, 5)); // makePoint(-1, -5)
calculateDistance(makePoint(-2, -3), makePoint(-4, 4)); // ≈ 7.28

About

TS-Expression stands for TypeScript (TS) + symbolic expression (s-expression). It is a lightweight TypeScript library inspired by LISP's cons/car/cdr operations for S-expressions. It brings functional programming concepts to TypeScript, enabling immutable data structures and encouraging robust, predictable code. This minimalist approach to handling complex data structures is particularly useful for algorithmic tasks and data manipulation, allowing developers to leverage powerful functional programming techniques in a familiar JavaScript/TypeScript environment.

Installation

Via npm

npm install ts-expression

Via yarn

yarn add ts-expression

Via pnpm

pnpm add ts-expression

Via bun

bun add ts-expression

Documentation

cons

Constructs a cons symbolic expression from two values, car and cdr.

This function creates a symbolic expression that allows access to its car (first/left element) and cdr (second/right element) using specific messages. The resulting s-expression is an immutable structure where car and cdr can be accessed via the messages CAR and CDR, respectively.

Parameters

  • car CAR The first/left element of the s-expression.
  • cdr CDR The second/right element of the s-expression.

Examples

// Creating a symbolic expression with a number and a string
const sexp = cons(5, 'hello');

// Accessing the first element using `CAR`
const five = sexp(CAR); // 5

// Accessing the second element using `CDR`
const hello = sexp(CDR); // 'hello'
  • Throws Error Throws an error if an unknown message is provided to the cons s-expression.

Returns Cons<CAR, CDR> A cons s-expression, which is a function that returns the car or cdr based on the provided message.

car

Retrieves the first element of a cons symbolic expression (known as car).

This function returns the left element of a symbolic expression created by the cons function. It ensures that the provided argument is a valid cons symbolic expression before attempting to access the element.

Parameters

  • cons Cons<CAR, CDR> The cons symbolic expression from which to retrieve the first element.

Examples

// Example usage
const sexp = cons(5, 'hello');

// Retrieves the first element of the symbolic expression
const five = car(sexp); // 5
  • Throws ReferenceError Throws an error if the provided argument is not a valid cons symbolic expression.

Returns CAR The first element (car) of the cons symbolic expression.

cdr

Retrieves the second element of a cons symbolic expression (known as cdr).

This function returns the right element of a symbolic expression created by the cons function. It ensures that the provided argument is a valid cons symbolic expression before attempting to access the element.

Parameters

  • cons Cons<CAR, CDR> The cons symbolic expression from which to retrieve the second element.

Examples

// Example usage
const sexp = cons(5, 'hello');

// Retrieves the second element of the symbolic expression
const hello = cdr(sexp); // 'hello'
  • Throws ReferenceError Throws an error if the provided argument is not a valid cons symbolic expression.

Returns CDR The second element (cdr) of the cons symbolic expression.

toString

Converts a cons symbolic expression into its string representation, handling nested cons s-expression recursively.

This function generates a string representation of a cons s-expression by retrieving its car and cdr elements, converting them to strings using JSON.stringify, and formatting them in a tuple-like format. If either car or cdr is a nested cons s-expression, the function will recursively convert those elements to strings as well.

Parameters

  • cons Cons<CAR, CDR> The cons s-expression to be converted to a string.

Examples

// Example usage
const sexp = cons(cons(1, 2), cons('hello', 'world'));

// Convert the nested symbolic expression to a string
const str = toString(sexp); // "((1, 2), ("hello", "world"))"
  • Throws ReferenceError Throws an error if the provided argument is not a valid cons s-expression.

Returns string A string representation of the cons s-expression, including nested s-expressions, in the format (head, tail).

isCons

Checks if the provided argument is a cons symbolic expression.

This function determines if the given value is a cons s-expression by checking if it is a function and has a specific init property set to true. This property is used as a marker to identify cons s-expression, which are functions with the init property indicating their construction.

Parameters

  • maybeCons any The value to be checked. It can be of any type.

Examples

// Example of a valid cons
const sexp = cons(5, 'hello');

// Checking if it's a cons
const isValid = isCons(sexp); // true

// Example of an invalid cons
const notSexp = { car: 5, cdr: 'hello' };

// Checking if it's a cons
const isInvalid = isCons(notSexp); // false

Returns boolean true if the argument is a cons symbolic expression; otherwise, false.

assertCons

Asserts that the provided argument is a valid cons s-expression and throws a ReferenceError if it is not.

This function checks whether the given argument is a valid cons s-expression using the isCons function. If the argument is not a valid s-expression, an error is thrown with a detailed message that includes the serialized form of the invalid argument.

Parameters

  • maybeCons any The value to be checked, which can be of any type.

Examples

// Example of a valid cons
const sexp = cons(5, 'hello');

// Asserting the cons, no error is thrown
assertCons(sexp);

// Example of an invalid cons
const notSexp = { car: 5, cdr: 'hello' };

// Asserting the non-s-expression, an error is thrown
assertCons(notSexp); // Throws ReferenceError: Argument must be a symbolic expression, but it was '{"car":5,"cdr":"hello"}'
  • Throws ReferenceError Throws an error if the provided argument is not a valid cons s-expression.

Returns void

Examples

Rational numbers as pairs of values: numerator and denominator.

import type { Cons } from 'ts-expression/cons';
import { car, cdr, cons } from 'ts-expression';
import { toString } from 'ts-expression/operators';

type Numerator = number;
type Denominator = number;
type Fraction = Cons<Numerator, Denominator>;

const make = (numer: Numerator, denom: Denominator) => cons(numer, denom);

const numer = (rat: Fraction): Numerator => car(rat);

const denom = (rat: Fraction): Denominator => cdr(rat);

const isEqual = (rat1: Fraction, rat2: Fraction): boolean =>
  numer(rat1) * denom(rat2) === denom(rat1) * numer(rat2);

const add = (rat1: Fraction, rat2: Fraction): Fraction => {
  const [a, b] = [numer(rat1), denom(rat1)];
  const [c, d] = [numer(rat2), denom(rat2)];

  return make(a * d + b * c, b * d); // (a * d + b * c) / (b * d)
};

const sub = (rat1: Fraction, rat2: Fraction): Fraction => {
  const [a, b] = [numer(rat1), denom(rat1)];
  const [c, d] = [numer(rat2), denom(rat2)];

  return make(a * d - b * c, b * d); // (a * d - b * c) / (b * d)
};

const mul = (rat1: Fraction, rat2: Fraction): Fraction => {
  const [a, b] = [numer(rat1), denom(rat1)];
  const [c, d] = [numer(rat2), denom(rat2)];

  return make(a * c, b * d); // (a * c) / (b * d)
};

const div = (rat1: Fraction, rat2: Fraction): Fraction => {
  const [a, b] = [numer(rat1), denom(rat1)];
  const [c, d] = [numer(rat2), denom(rat2)];

  return make(a * d, b * c); // (a * d) / (b * c)
};

//

const rat1 = make(2, 3);
const rat2 = make(4, 6);
const rat3 = make(7, 2);

toString(rat2); // '(4, 6)'
isEqual(rat1, rat2); // true

add(rat1, rat3); // 25/6
sub(rat3, rat1); // 17/6
mul(rat1, rat3); // 14/6
div(rat1, rat3); // 4/21

Inspirations

I’ve embraced the "Structure and Interpretation of Computer Programs" (SICP) and LISP's abstractions to deeply understand and appreciate functional programming and data manipulation. These foundational concepts highlight the power of simple, immutable data structures in building complex systems, emphasizing clarity and expressive power in code.