npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ts-bayes

v1.0.0

Published

Naive-bayes classifier that uses Laplace Smoothing. Port of Tolga Tezel's `bayes` module to Typescript.

Downloads

3

Readme

ts-bayes: A Naive-Bayes classifier for node.js, ported to Typescript

bayes takes a document (piece of text), and tells you what category that document belongs to.

This is a Typescript port of the original work by ttexel.

What can I use this for?

You can use this for categorizing any text content into any arbitrary set of categories. For example:

  • is an email spam, or not spam ?
  • is a news article about technology, politics, or sports ?
  • is a piece of text expressing positive emotions, or negative emotions?

Installing

npm install ts-bayes

##Usage


import { Bayes } from './index';

var classifier = new Bayes();

// teach it positive phrases

classifier.learn('amazing, awesome movie!! Yeah!! Oh boy.', 'positive')
classifier.learn('Sweet, this is incredibly, amazing, perfect, great!!', 'positive')

// teach it a negative phrase

classifier.learn('terrible, shitty thing. Damn. Sucks!!', 'negative')

// now ask it to categorize a document it has never seen before

classifier.categorize('awesome, cool, amazing!! Yay.')
// => 'positive'

// serialize the classifier's state as a JSON string.
var stateJson = classifier.toJson()

// load the classifier back from its JSON representation.
var revivedClassifier = Bayes.fromJson(stateJson)

API

let classifier = new Bayes([options])

Returns an instance of a Naive-Bayes Classifier.

Pass in an optional options object to configure the instance. If you specify a tokenizer function in options, it will be used as the instance's tokenizer. It receives a (string) text argument - this is the string value that is passed in by you when you call .learn() or .categorize(). It must return an array of tokens. The default tokenizer removes punctuation and splits on spaces.

Eg.

let classifier = new Bayes({
    tokenizer: function (text) { return text.split(' ') }
})

###classifier.learn(text, category)

Teach your classifier what category the text belongs to. The more you teach your classifier, the more reliable it becomes. It will use what it has learned to identify new documents that it hasn't seen before.

###classifier.categorize(text)

Returns the category it thinks text belongs to. Its judgement is based on what you have taught it with .learn().

###classifier.toJson()

Returns the JSON representation of a classifier.

###let classifier = Bayes.fromJson(jsonStr)

Returns a classifier instance from the JSON representation. Use this with the JSON representation obtained from classifier.toJson()

License

(The MIT License)

Copyright (c) by Tolga Tezel [email protected]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.