tokenx
v0.4.1
Published
GPT token estimation and context size utilities without a full tokenizer
Downloads
104
Readme
tokenx
GPT token count and context size utilities when approximations are good enough. For advanced use cases, please use a full tokenizer like gpt-tokenizer
. This library is intended to be used for quick estimations and to avoid the overhead of a full tokenizer, e.g. when you want to limit your bundle size.
Benchmarks
The following table shows the accuracy of the token count approximation for different input texts:
| Description | Actual GPT Token Count | Estimated Token Count | Token Count Deviation | | --- | --- | --- | --- | | Short English text | 10 | 11 | 10.00% | | German text with umlauts | 56 | 49 | 12.50% | | Metamorphosis by Franz Kafka (English) | 31892 | 33930 | 6.39% | | Die Verwandlung by Franz Kafka (German) | 40621 | 34908 | 14.06% | | 道德經 by Laozi (Chinese) | 14387 | 11919 | 17.15% | | TypeScript ES5 Type Declarations (~ 4000 loc) | 48408 | 51688 | 6.78% |
Features
- 🌁 Estimate token count without a full tokenizer
- 📐 Supports multiple model context sizes
- 🗣️ Supports accented characters, like German umlauts or French accents
- 🪽 Zero dependencies
Installation
Run the following command to add tokenx
to your project.
# npm
npm install tokenx
# pnpm
pnpm add tokenx
# yarn
yarn add tokenx
Usage
import {
approximateMaxTokenSize,
approximateTokenSize,
isWithinTokenLimit
} from 'tokenx'
const prompt = 'Your prompt goes here.'
const inputText = 'Your text goes here.'
// Estimate the number of tokens in the input text
const estimatedTokens = approximateTokenSize(inputText)
console.log(`Estimated token count: ${estimatedTokens}`)
// Calculate the maximum number of tokens allowed for a given model
const modelName = 'gpt-3.5-turbo'
const maxResponseTokens = 1000
const availableTokens = approximateMaxTokenSize({
prompt,
modelName,
maxTokensInResponse: maxResponseTokens
})
console.log(`Available tokens for model ${modelName}: ${availableTokens}`)
// Check if the input text is within a specific token limit
const tokenLimit = 1024
const withinLimit = isWithinTokenLimit(inputText, tokenLimit)
console.log(`Is within token limit: ${withinLimit}`)
API
approximateTokenSize
Estimates the number of tokens in a given input string based on common English patterns and tokenization heuristics. Work well for other languages too, like German.
Usage:
const estimatedTokens = approximateTokenSize('Hello, world!')
Type Declaration:
function approximateTokenSize(input: string): number
approximateMaxTokenSize
Calculates the maximum number of tokens that can be included in a response given the prompt length and model's maximum context size.
Usage:
const maxTokens = approximateMaxTokenSize({
prompt: 'Sample prompt',
modelName: 'text-davinci-003',
maxTokensInResponse: 500
})
Type Declaration:
function approximateMaxTokenSize({ prompt, modelName, maxTokensInResponse }: {
prompt: string
modelName: ModelName
/** The maximum number of tokens to generate in the reply. 1000 tokens are roughly 750 English words. */
maxTokensInResponse?: number
}): number
isWithinTokenLimit
Checks if the estimated token count of the input is within a specified token limit.
Usage:
const withinLimit = isWithinTokenLimit('Check this text against a limit', 100)
Type Declaration:
function isWithinTokenLimit(input: string, tokenLimit: number): boolean
License
MIT License © 2023-PRESENT Johann Schopplich