npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

tokengeex

v0.6.2

Published

This repository holds the code for the TokenGeeX Rust crate and Python package. TokenGeeX is a tokenizer for [CodeGeeX](https://github.com/THUDM/Codegeex2) aimed at code and Chinese. It is based on [UnigramLM (Taku Kudo 2018)](https://arxiv.org/abs/1804.1

Downloads

4

Readme

TokenGeeX - Efficient Tokenizer for CodeGeeX

This repository holds the code for the TokenGeeX Rust crate and Python package. TokenGeeX is a tokenizer for CodeGeeX aimed at code and Chinese. It is based on UnigramLM (Taku Kudo 2018) and TokenMonster.

Python

You can install the PyPI TokenGeeX package through pip.

pip install tokengeex

Example usage:

import tokengeex

tokenizer = tokengeex.load("code-32k-strict.json")

# Vocab
print(tokenizer.vocab_size()) # 32768
print(tokenizer.token_to_id(b"token")) # 13513
print(tokenizer.id_to_token(13513)) # (b"token", -13.322)

# Encode
ids = tokenizer.encode("def main(): print(\"Hello world!\")")
print(ids) # [68, 437, 12747, 58, 14653, 2807, 1735, 10120]

# Decode
print(tokenizer.decode(ids, include_special_tokens=False)) # "def main(): print(\"Hello world!\")"

# Byte fallbacks
print([tokenizer.id_to_token(id) for id in tokenizer.encode("电脑")]) # ["电", "<0xe8>", "<0x84>", "<0x91>"]

Rust

You can install the Rust library crate through cargo.

cargo add tokengeex

Example usage:

fn main() {
    let tokenizer = tokengeex::load("code-32k-strict.json").unwrap();

    // Vocab
    println!("{}", tokenizer.vocab_size());
    println!("{}", tokenizer.token_to_id("token").unwrap())
    println!("{:?}", tokenizer.id_to_token(13513).unwrap())

    // Encode
    let ids = tokenizer.encode("def main(): print(\"Hello world!\")");
    println!("{:?}", ids); // [68, 437, 12747, 58, 14653, 2807, 1735, 10120]

    // Decode
    println!("{:?}", tokenizer.decode(ids, false)); // "def main(): print(\"Hello world!\")"

    // Byte fallbacks
    println!("{:?}", tokenizer.encode("电脑").map(|id| tokenizer.id_to_token(id))); // ["电", "<0xe8>", "<0x84>", "<0x91>"]
}

CLI

Train

You can install the Rust binary crate through cargo.

cargo install tokengeex --features cli

Here's the full command used to train base vocabularies.

RUST_LOG=debug RAYON_NUM_THREADS=120 tokengeex train \
    --model 'unigram' \
    --output 'base-131k.json' \
    --logfile 'base-131k.log' \
    --vocab-size 131072 \
    --processor 'nfc' \
    --processor 'crlf' \
    --initial-vocab-max-token-length 32 \
    --initial-vocab-size 10000000 \
    --initial-vocab-insert-probability 0.01 \
    --initial-vocab-allow "$(cat data/base.regex)" \
    --unigram-shrinking-factor 0.8 \
    --unigram-num-sub-iterations 2 \
    --unigram-sample-regularization 'log' \
    --added-tokens-file './hub/tokens/base/added.json' \
    --suggested-tokens-file './hub/tokens/base/suggested.json' \
    $(for lang in infilling assembly cuda hcl kotlin php shell xml c-sharp dart html powershell sql yaml c diff java lua python swift zig chinese-markdown dockerfile javascript makefile r tex cmake elixir json markdown ruby toml cpp go jsx pascal rust typescript css haskell julia perl scala vue; do echo "--train ${lang}:./hub/data/train/${lang}.bin --test ${lang}:./hub/data/test/${lang}.bin --suggested-tokens-file ./hub/tokens/base/suggested-${lang}.json "; done)

Here's the full command used to train capcode vocabularies.

RUST_LOG=debug RAYON_NUM_THREADS=120 tokengeex train \
    --model 'unigram' \
    --output 'capcode-65k.json' \
    --logfile 'capcode-65k.log' \
    --vocab-size 65536 \
    --processor 'nfc' \
    --processor 'crlf' \
    --processor 'capcode' \
    --initial-vocab-max-token-length 32 \
    --initial-vocab-size 10000000 \
    --initial-vocab-insert-probability 0.01 \
    --initial-vocab-allow "$(cat data/capcode.regex)" \
    --unigram-shrinking-factor 0.8 \
    --unigram-num-sub-iterations 2 \
    --unigram-sample-regularization 'log' \
    --added-tokens-file './hub/tokens/capcode/added.json' \
    --suggested-tokens-file './hub/tokens/capcode/suggested.json' \
    $(for lang in infilling assembly cuda hcl kotlin php shell xml c-sharp dart html powershell sql yaml c diff java lua python swift zig chinese-markdown dockerfile javascript makefile r tex cmake elixir json markdown ruby toml cpp go jsx pascal rust typescript css haskell julia perl scala vue; do echo "--train ${lang}:./hub/data/train/${lang}.bin --test ${lang}:./hub/data/test/${lang}.bin --suggested-tokens-file ./hub/tokens/capcode/suggested-${lang}.json "; done)

Extend with BPE

RUST_LOG=debug RAYON_NUM_THREADS=120 tokengeex bpe \
    --output ./capcode-131k-extended.json \
    --vocab ./capcode-131k.json \
    --num-merges 1000 \
    --step 10 \
    --score-scale-factor 0.75 \
    --max-merge-length 12 \
    --ignore '^$' \
    $(for lang in infilling assembly cuda hcl kotlin php shell xml c-sharp dart html powershell sql yaml c diff java lua python swift zig chinese-markdown dockerfile javascript makefile r tex cmake elixir json markdown ruby toml cpp go jsx pascal rust typescript css haskell julia perl scala vue; do echo "--train ${lang}:./hub/data/train/${lang}.bin --test ${lang}:./hub/data/test/${lang}.bin "; done)