npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

tnthai

v1.0.4

Published

a portable TN-Thai analyzer from java to javascript

Downloads

363

Readme

TNThai or TN-Thai Analyzer

TN-Thai analyzer is a Thai Word segmentation module in Node.js. The segmentation algorithm is a kind of dictionary-based segmentation. Internally, the analyzer contains two segmentation algorithm named Safe and Unsafe segmentation (In Thai , soon will be in English version). The library uses Trie data structure in Double-array implementation to store Thai words. The Thai-word dictionary is coming from Lexitron (NECTEC) and Swath Program.

Installation

npm install tnthai

or

npm install tnthai --save

The basic usage

tnthai = require('tnthai')
var analyzer = new tnthai()

analyzer.segmenting("สวัสดีชาวโลก")
// { solution : ['สวัสดี', 'ชาวโลก'] }

analyzer.segmenting("สองสาวสุดแสนสวยใส่เสื้อสีแสดสวมสร้อยสี่แสนสามสิบเส้นส้นสูง")
// { solution: [ 'สอง', 'สาว', 'สุด', 'แสน', 'สวย', 'ใส่', 'เสื้อ', 'สี'
, 'แสด','สวม', 'สร้อย', 'สี่', 'แสน', 'สาม', 'สิบ', 'เส้น', 'ส้นสูง'] }

Filter stopword in the segmented result

analyzer.segmenting("เราคนหนึ่งคนนั้น ในวันหนึ่งวันนั้นเรายังผูกพันกันมากมาย"
, {filterStopword : true})
// {solution: [ 'คน', 'คน', ' ', 'วันหนึ่ง', 'ผูกพัน', 'มากมาย' ]}

analyze Thai and English (but not so smart)

analyzer.segmenting("สวัสดีชาวโลก Hello World!!")
// {solution: [ 'สวัสดี', 'ชาวโลก', ' ', 'Hello', ' ', 'World', '!!' ]}

give multiple Solution in segmentation

analyzer.segmenting("คนแก่ขนของ", {multiSolution : true})
// { solution: 
//   [ [ 'คนแก่', 'ขนของ' ],
//     [ 'คนแก่', 'ขน', 'ของ' ],
//     [ 'คน', 'แก่', 'ขนของ' ],
//     [ 'คน', 'แก่', 'ขน', 'ของ' ] ] }

unsafe segment in case of misspell occur in the input sentences

//misspell input
analyzer.segmenting("คนแก่สขนของ", {multiSolution : true})
// { solution: [ [ 'คนแก่', 'ส', 'ขนของ' ] ] }

Applications of thai word segmentation:

  1. analyzing a sentence for keywords to query in databases : TNThaiAnalyzer
  2. language modeling for generating a based-word list relatively to the documents in databases for spell correction

gitlab url : https://gitlab.thinknet.co.th/prapeepat/TNThaiAnalyzer

Up-coming features : In version 1.1.0, there will be POS (Parts of speech) tagging feature using Probabilistic N-gram with Orchid corpus. The example usage will be like followed:

analyzer.segmenting("คนแก่ขนของ", {multiSolution : true, POSTagging : true})
// { solution: 
//   [ [ {'คนแก่', 'NPRP'}, {'ขนของ', 'VACT'} ],
//     [ {'คนแก่', 'NPRP'}, {'ขน', 'VACT'}, {'ของ', 'NCMN'} ],
//     [ {'คน', 'NCMN'}, {'แก่', 'VATT'}, {'ขนของ', 'VACT'} ],
//     [ {'คน', 'NCMN'}, {'แก่', 'VATT'}, {'ขน', 'VACT'}, {'ของ', 'NCMN'} ] ] }
//      NPRP ~ Proper noun , VACT ~ Active verb, NCMN ~ Common noun, VATT ~ Attributive verb 

the detail of POSTagging can be found here

opened to have feedback from you guys!!!