npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

tflite-react-native

v0.0.5

Published

A react native library for accessing TensorFlow Lite API. Supports Classification and Object Detection on both iOS and Android.

Downloads

734

Readme

tflite-react-native

A React Native library for accessing TensorFlow Lite API. Supports Classification, Object Detection, Deeplab and PoseNet on both iOS and Android.

Table of Contents

Installation

$ npm install tflite-react-native --save

iOS (only)

TensorFlow Lite is installed using CocoaPods:

  1. Initialize Pod:

    cd ios
    pod init
  2. Open Podfile and add:

    target '[your project's name]' do
    	pod 'TensorFlowLite', '1.12.0'
    end
  3. Install:

    pod install

Automatic link

$ react-native link tflite-react-native

Manual link

iOS

  1. In XCode, in the project navigator, right click LibrariesAdd Files to [your project's name]
  2. Go to node_modulestflite-react-native and add TfliteReactNative.xcodeproj
  3. In XCode, in the project navigator, select your project. Add libTfliteReactNative.a to your project's Build PhasesLink Binary With Libraries
  4. Run your project (Cmd+R)<

Android

  1. Open up android/app/src/main/java/[...]/MainApplication.java
  • Add import com.reactlibrary.TfliteReactNativePackage; to the imports at the top of the file
  • Add new TfliteReactNativePackage() to the list returned by the getPackages() method
  1. Append the following lines to android/settings.gradle:
    include ':tflite-react-native'
    project(':tflite-react-native').projectDir = new File(rootProject.projectDir,   '../node_modules/tflite-react-native/android')
  2. Insert the following lines inside the dependencies block in android/app/build.gradle:
      compile project(':tflite-react-native')

Add models to the project

iOS

In XCode, right click on the project folder, click Add Files to "xxx"..., select the model and label files.

Android

  1. In Android Studio (1.0 & above), right-click on the app folder and go to New > Folder > Assets Folder. Click Finish to create the assets folder.

  2. Place the model and label files at app/src/main/assets.

  3. In android/app/build.gradle, add the following setting in android block.

    aaptOptions {
        noCompress 'tflite'
    }

Usage

import Tflite from 'tflite-react-native';

let tflite = new Tflite();

Load model:

tflite.loadModel({
  model: 'models/mobilenet_v1_1.0_224.tflite',// required
  labels: 'models/mobilenet_v1_1.0_224.txt',  // required
  numThreads: 1,                              // defaults to 1  
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});

Image classification:

tflite.runModelOnImage({
  path: imagePath,  // required
  imageMean: 128.0, // defaults to 127.5
  imageStd: 128.0,  // defaults to 127.5
  numResults: 3,    // defaults to 5
  threshold: 0.05   // defaults to 0.1
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});
  • Output fomart:
{
  index: 0,
  label: "person",
  confidence: 0.629
}

Object detection:

SSD MobileNet

tflite.detectObjectOnImage({
  path: imagePath,
  model: 'SSDMobileNet',
  imageMean: 127.5,
  imageStd: 127.5,
  threshold: 0.3,       // defaults to 0.1
  numResultsPerClass: 2,// defaults to 5
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});

Tiny YOLOv2

tflite.detectObjectOnImage({
  path: imagePath,
  model: 'YOLO',
  imageMean: 0.0,
  imageStd: 255.0,
  threshold: 0.3,        // defaults to 0.1
  numResultsPerClass: 2, // defaults to 5
  anchors: [...],        // defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
  blockSize: 32,         // defaults to 32 
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});
  • Output fomart:

x, y, w, h are between [0, 1]. You can scale x, w by the width and y, h by the height of the image.

{
  detectedClass: "hot dog",
  confidenceInClass: 0.123,
  rect: {
    x: 0.15,
    y: 0.33,
    w: 0.80,
    h: 0.27
  }
}

Deeplab

tflite.runSegmentationOnImage({
  path: imagePath,
  imageMean: 127.5,      // defaults to 127.5
  imageStd: 127.5,       // defaults to 127.5
  labelColors: [...],    // defaults to https://github.com/shaqian/tflite-react-native/blob/master/index.js#L59
  outputType: "png",     // defaults to "png"
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});
  • Output format:

    The output of Deeplab inference is Uint8List type. Depending on the outputType used, the output is:

    • (if outputType is png) byte array of a png image

    • (otherwise) byte array of r, g, b, a values of the pixels

PoseNet

Model is from StackOverflow thread.

tflite.runPoseNetOnImage({
  path: imagePath,
  imageMean: 127.5,      // defaults to 127.5
  imageStd: 127.5,       // defaults to 127.5
  numResults: 3,         // defaults to 5
  threshold: 0.8,        // defaults to 0.5
  nmsRadius: 20,         // defaults to 20 
},
(err, res) => {
  if(err)
    console.log(err);
  else
    console.log(res);
});
  • Output format:

x, y are between [0, 1]. You can scale x by the width and y by the height of the image.

[ // array of poses/persons
  { // pose #1
    score: 0.6324902,
    keypoints: {
      0: {
        x: 0.250,
        y: 0.125,
        part: nose,
        score: 0.9971070
      },
      1: {
        x: 0.230,
        y: 0.105,
        part: leftEye,
        score: 0.9978438
      }
      ......
    }
  },
  { // pose #2
    score: 0.32534285,
    keypoints: {
      0: {
        x: 0.402,
        y: 0.538,
        part: nose,
        score: 0.8798978
      },
      1: {
        x: 0.380,
        y: 0.513,
        part: leftEye,
        score: 0.7090239
      }
      ......
    }
  },
  ......
]

Release resources:

tflite.close();

Example

Refer to the example.