tesspathy
v0.1.1
Published
A Javascript library to convert vector graphics paths into triangles which can be used directly by GL-like APIs.
Downloads
5
Maintainers
Readme
Description
Tesspathy is a Javascript utility library for converting vector representation (aka path) of 2d graphics into the form (basically triangles) capable of being fed to GL-like (e.g. WebGL) APIs.
Features
- Tessellate not only polygons, but also quadratic Bezier curves, into a resolution independent form.
- Tessellate not only filled regions, but also straight/curve strokes.
- Holes and separated regions supported, with no need of explicit declaration.
- Without any post-processing, all necessary basic data for rendering by WebGL is ready in output.
- No extra dependencies. Input and output are all plain Javascript Arrays.
- Reasonable degree of error tolerance.
Installation
Install using npm
npm install tesspathy
Then require it into any module
var Tesspathy = require('tesspathy');
var tLoactions = [/* ... */], tLabels = [/* ... */];
var tResult = Tesspathy.triangulate(tLocations, tLabels);
To use Tesspathy from a browser, download the appropriate file(s) from the following:
- dist/tesspathy.js: uncompressed JS file
- dist/tesspathy.min.js: compressed JS file
- dist/tesspathy.min.js.map: source map file
And then add it as a script tag to your page
<script src="tesspathy.min.js"></script>
<script>
var tLoactions = [/* ... */], tLabels = [/* ... */];
var tResult = Tesspathy.triangulate(tLocations, tLabels);
</script>
Usage
API
Input data of shape contours with one or multiple separated regions, zero or multiple holes, can be all passed in together, without explicit separation. The same for lines with one or multiple connected/disconnected strokes.
Tesspathy.triangulate(locations, labels)
Tessellate one or multiple closed shapes (with zero or multiple holes possibly) defined by locations
and labels
.
Tesspathy.triangulateLine(locations, labels, lineStyle)
Tessellate one or multiple strokes defined by locations
, labels
, and lineStyle
.
Tesspathy.setFillCoordinates(fillCoordinates)
Set the values to be used when generating the fillCoordinates
field of the output object of both Tesspathy.triangulate
and Tesspathy.triangulateLine
.
The meaning and usage of this fillCoordinates
is not defined in the scope of Tesspathy project. One possible usage is to pass it as another vertex attribute to shader program for certain rendering effects, such as resolution independent curve (live demo).
Tesspathy.getFillCoordinates()
Get the current values used to generate the fillCoordinates
field of the output object.
Parameters
locations
Array of point locations, of the following form:
[
[x0, y0], [x1, y1], [x2, y2], ... , [xN, yN], // 1st shape or line
[xN+1, yN+1], [xN+2, yN+2], ... , [xN+M, yN+M], // 2nd shape or line
... // more shapes or lines
]
- For each single closed shape (not line), the last point location must be the same with the first location.
- The order of point locations (clockwise or counterclockwise) is not restricted, but within a single
locations
array, all the contours should be in the same order while all the holes should be in the reversed order.
labels
Array of point labels to indicating
- the start of a new shape or line,
- normal point or control point(of Bezier curve).
For example:
// START = [Tesspathy.PATH_START], ANCHOR = [Tesspathy.PATH_ANCHOR], CONTROL = [Tesspathy.PATH_CONTROL];
[
START, ANCHOR, CONTROL, ..., ANCHOR, // 1st shape or line
START, CONTROL, ANCHOR, ..., ANCHOR, // 2nd shape or line
... // more shapes or lines
]
- For each single closed shape or line, the first label must be
START
and the last must beANCHOR
. - The label of point with location
locations[i]
should belabels[i][0]
.
lineStyle
Object defining the line style used to render strokes, of the following form:
{
width: 20,
cap: 'round',
join: 'round'
};
- The value of
width
will be regarded as using the same length unit oflocations
. - By now, the only supported line join/cap is
'round'
.
fillCoordinates
Object defining the values to be used when generating the fillCoordinates
field of the output. For example:
{
straight: {s: STRAIGHT_S, t: STRAIGHT_T},
out_anchor0: {s: OUT_ANCHOR0_S, t: OUT_ANCHOR0_T},
out_control: {s: OUT_CONTROL_S, t: OUT_CONTROL_T},
out_anchor1: {s: OUT_ANCHOR1_S, t: OUT_ANCHOR1_T},
in_anchor0: {s: IN_ANCHOR0_S, t: IN_ANCHOR0_T},
in_control: {s: IN_CONTROL_S, t: IN_CONTROL_T},
in_anchor1: {s: IN_ANCHOR1_S, t: IN_ANCHOR1_T}
}
Output
The output of both Tesspathy.triangulate
and Tesspathy.triangulateLine
will be an Object of the following form:
{
triangleLocations: [x0, y0, x1, y1, ..., xK, yK]
fillCoordinates: [s0, t0, s1, t1, ..., sK, yK]
triangleIndices: [0, 1, 2, 1, 3, 4, ..., K-5, K-3, K-2]
}
This output can be used directly by WebGL. For example:
...
var tPosition = gl.getAttribLocation(...);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(result.triangleLocations), gl.STATIC_DRAW);
gl.vertexAttribPointer(tPosition, 2, gl.FLOAT, false, 0, 0);
var tCoord = gl.getAttribLocation(...);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(result.fillCoordinates), gl.STATIC_DRAW);
gl.vertexAttribPointer(tCoord, 2, gl.FLOAT, false, 0, 0);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(result.triangleIndices), gl.STATIC_DRAW);
gl.drawElements(gl.TRIANGLES, result.triangleIndices.length, gl.UNSIGNED_SHORT, 0);
Thus, if you set your GL status and matrix uniform(s) correctly, and write your shaders (especially fragment shader) well, you will see your shapes or lines defined in vector form being rendered by using WebGL. If there is any problem, please first have a look at the live demo provided.
Note
- Shapes with self-crossing contours will result in undefined behaviour.
- By now, the only supported curve type is quadratic Bezier curve.
Author
Guangyao Liu
Contributions
We use GitHub issues to track requests and public bugs. Please ensure your description is clear and has sufficient instructions to be able to reproduce the issue.
Licence
Copyright © 2015 Guangyao Liu / GREE, Inc.
Licensed under the MIT License.