npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

tensorx

v0.0.1

Published

Generate Tensorflow model with JSON. A Declarative JSON library for AI, NLP and ML models powered by tensorflow

Downloads

151

Readme

TensorScript - Machine Learning and Neural Networks with Tensorflow

Coverage Status Build Status

Introduction

This library is a compilation of model building modules with a consistent API for quickly implementing Tensorflow at edge(browser) or any JavaScript environment (Node JS / GPU).

Read the manual

List of Tensorflow models

Classification

Regression

Artificial neural networks (ANN)

LSTM Time Series

Basic Usage

TensorScript is and ECMA Script module designed to be used in an ES2015+ environment, if you need compiled modules for older versions of node use the compiled modules in the bundle folder.

Please read more on tensorflow configuration options, specifying epochs, and using custom layers in configuration.

Regression Examples

import { MultipleLinearRegression, DeepLearningRegression, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [ 'sqft', 'bedrooms',];
  const dependentVariables = [ 'price', ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/portland_housing_data.csv');
  const DataSet = new ms.DataSet(housingdataCSV);
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const MLR = new MultipleLinearRegression();
  await MLR.train(x_matrix, y_matrix);
  const DLR = new DeepLearningRegression();
  await DLR.train(x_matrix, y_matrix);
  //1600 sqft, 3 bedrooms
  await MLR.predict([1650,3]); //=>[293081.46]
  await DLR.predict([1650,3]); //=>[293081.46]
}
main();

Classification Examples

import { DeepLearningClassification, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [
    'sepal_length_cm',
    'sepal_width_cm',
    'petal_length_cm',
    'petal_width_cm',
  ];
  const dependentVariables = [
    'plant_Iris-setosa',
    'plant_Iris-versicolor',
    'plant_Iris-virginica',
  ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/iris_data.csv');
  const DataSet = new ms.DataSet(housingdataCSV).fitColumns({ columns: {plant:'onehot'}, });
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const nnClassification = new DeepLearningClassification();
  await nnClassification.train(x_matrix, y_matrix);
  const input_x = [
    [5.1, 3.5, 1.4, 0.2, ],
    [6.3, 3.3, 6.0, 2.5, ],
    [5.6, 3.0, 4.5, 1.5, ],
    [5.0, 3.2, 1.2, 0.2, ],
    [4.5, 2.3, 1.3, 0.3, ],
  ];
  const predictions = await nnClassification.predict(input_x); 
  const answers = await nnClassification.predict(input_x, { probability:false, });
  /*
    predictions = [
      [ 0.989512026309967, 0.010471616871654987, 0.00001649192017794121, ],
      [ 0.0000016141033256644732, 0.054614484310150146, 0.9453839063644409, ],
      [ 0.001930746017023921, 0.6456733345985413, 0.3523959517478943, ],
      [ 0.9875779747962952, 0.01239941269159317, 0.00002274810685776174, ],
      [ 0.9545140862464905, 0.04520365223288536, 0.0002823179238475859, ],
    ];
    answers = [
      [ 1, 0, 0, ], //setosa
      [ 0, 0, 1, ], //virginica
      [ 0, 1, 0, ], //versicolor
      [ 1, 0, 0, ], //setosa
      [ 1, 0, 0, ], //setosa
    ];
   */
}
main();
import { LogisticRegression, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [
    'Age',
    'EstimatedSalary',
  ];
  const dependentVariables = [
    'Purchased',
  ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/social_network_ads.csv');
  const DataSet = new ms.DataSet(housingdataCSV).fitColumns({ columns: {Age:['scale','standard'],
  EstimatedSalary:['scale','standard'],}, });
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const LR = new LogisticRegression();
  await LR.train(x_matrix, y_matrix);
  const input_x = [
    [-0.062482849427819266, 0.30083326827486173,], //0
    [0.7960601198093905, -1.1069168538010206,], //1
    [0.7960601198093905, 0.12486450301537644,], //0
    [0.4144854668150751, -0.49102617539282206,], //0
    [0.3190918035664962, 0.5061301610775946,], //1
  ];
  const predictions = await LR.predict(input_x); // => [ [ 0 ], [ 0 ], [ 1 ], [ 0 ], [ 1 ] ];
}
main();

Time Series Example

import { LSTMTimeSeries, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const dependentVariables = [
    'Passengers',
  ];
  const airlineCSV = await ms.csv.loadCSV('./test/mock/data/airline-sales.csv');
  const DataSet = new ms.DataSet(airlineCSV);
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const TS = new LSTMTimeSeries();
  await TS.train(x_matrix);
  const forecastData = TS.getTimeseriesDataSet([ [100 ], [200], [300], ])
  await TS.predict(forecastData.x_matrix); //=>[200,300,400]
}
main();

Testing

$ npm i
$ npm test

Contributing

Fork, write tests and create a pull request!

Misc

As of Node 8, ES modules are still used behind a flag, when running natively as an ES module

$ node --experimental-modules manual/examples/ex_regression-boston.mjs
# Also there are native bindings that require Python 2.x, make sure if you're using Anaconda, you build with your Python 2.x bin
$ npm i --python=/usr/bin/python

Special Thanks

License

MIT