tabular-archive
v1.0.0
Published
A node.js module and CLI that encodes a CSV into a compressed archive, and a browser module for reading rows of data from the archive.
Downloads
1
Readme
tabular-archive
A node.js module and CLI that encodes a CSV into a compressed archive, and a browser module for reading rows of data from the archive. Rows of data can be read out individually, or with a start and end range. If the encoding process is provided with a function to determine an ID value for each row, then rows can be read from the archive based on the ID of a row, and optionally with a surrounding page of rows.
Data values are encoded with the protocol-buffer-encodings
module, and subsequently gzip'd with fflate
.
The motivation for this project was to support creating an HTML table of data without reading the entire CSV into memory. An expression of gratitude for the network and not using more than needed. A sentiment encountered while doing volunteer spatial analysis work for the Open Redcedar Dieback Analyses. This code powers the data fetching of the interactive data explorer of the Distance to Waterways Analysis that I produced. The source code of which lives here.
Install
npm install tabular-archive
Usage
Write a configuration module that optionally includes header
, idForRow
, idEncoder
that is reflective of the CSV to archive. Any fields not represnted in the header
array will be encoded as a string
type. The more fields that are defined, the more opportunities to compress the data.
// ta-config.mjs
import { encoderTypes } from 'tabular-archive'
export const header = [
{
field: 'name',
encoder: encoderTypes.string,
},
{
field: 'age',
encoder: encoderTypes.int32,
},
{
field: 'memberId',
encoder: encoderTypes.int64,
},
{
field: 'activeMember',
encoder: encoderTypes.bool,
},
{
field: 'signUpDate',
encoder: encoderTypes.date,
},
{
field: 'astrologicalSign',
encoder: encoderTypes.category,
},
{
field: 'latitude',
encoder: encoderTypes.geo,
},
{
field: 'longitude',
encoder: encoderTypes.geo,
},
]
export const idForRow = ({ row }) => row.memberId
export const idEncoder = encoderTypes.int64
Run the CLI, referencing the ta-config.mjs
file described above.
tabular-archive data.csv -c ta-config.mjs -o encoded.ta
This will use the configuration to encode the data.csv
file into the encoded.ta
file.
With an encoded file, you can write the following browser code to read out rows of data.
import { decodeFetch as TADecoder } from 'tabular-archive'
const decoder = await TADecoder({ archiveFilePath })
const pageCount = 10
const startRowNumber = 0
const endRowNumber = pageCount - 1
for await (const { row, rowNumber } of decoder.getRowsBySequence({ startRowNumber, endRowNumber })) {
console.log({ row })
}
It is also possible to decode rows of data from node.js using the filesystem interface.
import { decodeFs as TADecoder } from 'tabular-archive'
If a tabular-archive
was encoded with a row ID using the idForRow
function and optionally the idEncoder
string, then the archive can be queried using a row ID. This is useful for coordinating views of data.
const pageCount = 10
for await (const { row, rowNumber } of decoder.getRowsByIdWithPage({ id, pageCount })) {
console.log({ row })
}
API
index.mjs
exports a node.js interface:
await encode({ csvFilePath, userHeader, userIdForRow, userIdEncoder, archiveFilePath })
The encode function will take a csvFilePath
and produce a tabular-archive at the archiveFilePath
location. userHeader
, userIdForRow
& userIdEncoder
are optional.
const decoder = await decodeFs({ arhiveFilePath })
The decoder object has the following shape.
{
rowCount : number,
headerRow : [{ field : string, encoder : string }],
categories : [category : string],
getRowBySequence : async ({ rowNumber : number }) => { row },
getRowsBySequence : async ({ startRowNumber: number, endRowNumber : number }) => yield { row, rowNumber },
getRowById : async ({ id }) => { row, rowNumber },
getRowsByIdWithPage : async ({ id, pageCount : number }) => yield { row, rowNumber },
}
const decoderCustomReader = decode({ readRange })
decode
can be used to configure the decoder with a custom readRange
interface, other than the supplied node.js filesystem and fetch interface. readRange
has the signature
async ({ filePath : string, start : number, end : end, ranges : [{ start, end }] }) => buffer
It should be able to read a singluar range using start
and end
attributes, or multiple ranges using the ranges
value.
The return value of the decode
function is an async function that takes an object with { archiveFilePath }
that resolves a decoder object.
encoderTypes
is an ojbect with keys for each of the encoder types that a userHeader
can contain. These are listed in the CLI output by running tabular-archive -h
.
browser.mjs
exports:
const decoder = await decodeFetch({ archiveFilePath })
returns a decoder-object as defined above.
const decoderCustomReader = decode({ readRange })
returns a decoder with customer range reader.
Tests
npm test
The tests show how each module gets used and composed in a final tabular-archive. The test/user-supplied/redcedar-config.mjs file also shows how encoding can be configured.
tabular-archive
Spec
The archive contains a header that describes the shape of the archive and how it can be decoded. The header contains the following bytes of encoded data.
- 'TabularArchive', the name of our file format
- 1, the current version number
headerRowtStart
, the start of theheaderRow
byte rangeheaderRowEnd
, the end of theheaderRow
byte rangecategoriesStart
, the start of thecategories
byte rangecategoriesEnd
, the end of thecategories
byte rangedataRowIdEncoderType
, the string that represents the encoder type used to encodedataRowIds
valuesdataRowIdsStart
, the start of thedataRowIds
byte rangedataRowIdsEnd
, the end of thedataRowIds
byte rangedataRowLengthsStart
, the start of thedataRowLengths
byte rangedataRowLengthsEnd
, the end of thedataRowLengths
byte range
The headerRow
is a series of field
and encoder
values both stored as strings.
The categories
are a series of category
string values.
The dataRowIdEncoderType
is a string that represents the encoder used for the dataRowIds
. For example, 'int32'.
The dataRowIds
are a series of values encoded using the dataRowIdEncoderType
.
The dataRowLengths
are a series of byte length values.
The data rows are stored with the lengths specified in dataRowLengths
, starting at the byte offset defined as dataRowLengthsEnd
.