npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

tablestore-js

v1.0.4

Published

Aliyun TableStore SDK for JavaScript

Downloads

8

Readme

Build Status FOSSA Status NPM Package NPM Downloads

什么是表格存储

表格存储(Table Store)是阿里云自研的 NoSQL 多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够支持 PB 级存储、千万 TPS 以及毫秒级延迟的服务能力。

为什么要选择阿里云表格存储

表格存储让我不需要关心运维层面的问题:可靠、安全、快速,并且非常灵活,无限无缝拓展,价格实惠;

引用官方,上面有更全面的说明:产品优势

为什么要自己写一个 SDK

自己在用表格存储的时候,觉得官方的 SDK 需要我关心很多与表格存储设计原理相关的事情,例如 Long 类型或搜索;

而我作为用户使用,更希望关注与自己业务相关的问题,当业务复杂度日益增长,更需要想办法节约成本;

于是当我插入一条数据进表格、或者搜索的时候,把一些自己不想关心的操作放到了公共函数中处理,代码更加简洁,如下:

// PUT
const res = await tj.row('sampleTable')
  .rowExistenceExpectation(RowExistenceExpectation.IGNORE)
  .returnType(ReturnType.Primarykey)
  .put({
    gid: 20013,
    uid: 20013,
    col1: '表格存储',
    col2: '2',
    col3: 3.1,
    col4: -0.32,
    col5: 123456789,
  });

// Nested search
const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.TERM_QUERY,
    fieldName: 'Col_Nested.Sub_Col_Keyword',
    value: 'hangzhou',
  }]);

以上操作等同官方 SDK 的以下两个示例: 单行数据操作嵌套类型查询

当然这是一个取舍的问题,带来了便捷性的提升同时也舍弃了复杂的操作;例如我需要操作多版本数据时更常用官方的方式。

谨慎用于生产环境,推荐使用阿里云官方 SDK:aliyun-tablestore-nodejs-sdk

具体做的事情

这个 SDK 是基于官方的 aliyun-tablestore-nodejs-sdk 做了一层简易的封装,具体的一些改变如下:

  1. 使用 JSDoc 注释规范维护代码;

  2. getRowsearchbatchGetRowgetRange 方法上,返回的数据新增 data 字段,该字段由 rowrows 生成:

  • 将数据转换为 key:value 的格式;
  • Int64 对象类型转换为 Number 类型
  • Nested 字符串通过 JSON.parse 转换成对象
  • 生成 data 的过程不改变其他任何字段;
  1. primaryKey, attributeColumns 相关的传入都使用 key:value 方式传入,不用区分 primaryKey, attributeColumns

  2. 使用链式调用,不用关心参数结构;

  3. 添加更多默认值;

如何使用

准备工作

在使用之前,请确保已开通 表格存储,并已完成密钥配置。

参考:初始化

初始化

const { TJ } = require('tablestore-js');

const tj = new TJ(config, tables, indexes);

参数说明

config {
  required string accessKeyId = 1
  required string accessKeySecret = 2
  required string endpoint = 3
  required string instancename = 4
  optional string stsToken = 5
  optional string maxRetries = 6
}
tables {
  required string tableName = 1
  required string primaryKey = 2
}
indexes {
  required string tableName = 1
  required string primaryKey = 2
}

注意:参数的命名以 aliyun-tablestore-nodejs-sdk 为准

表操作

以下操作等同官方文档:

创建表

const res = await tj.table('sampleTable')
  .capacityUnit({
    read: 0,
    write: 0,
  })
  .tableOptions({
    timeToLive: -1,
    maxVersions: 1,
  })
  .create;

更新表

const res = await tj.table('sampleTable')
  .tableOptions({
    maxVersions: 5,
  })
  .update;

查询表描述信息

const res = await tj.table('sampleTable').describe;

列出表名称

const res = await tj.table().list;

删除表

const res = await tj.table('sampleTable').delete;

索引操作

以下操作等同官方文档:

列出多元索引

const res = await tj.index('sampleTable').list;

创建多元索引

const res = await tj.index('sampleTable')
  .indexName('sampleIndex')
  .create;

删除多元索引

const res = await tj.index('sampleTable')
  .indexName('sampleIndex')
  .delete;

查询多元索引描述信息

const res = await tj.index('sampleTable')
  .indexName('sampleIndex')
  .describe;

单行数据操作

以下操作等同于官方文档 单行数据操作

插入一行数据

const { RowExistenceExpectation, ReturnType } = require('tablestore-js');

const res = await tj.row('sampleTable')
  .rowExistenceExpectation(RowExistenceExpectation.IGNORE)
  .returnType(ReturnType.Primarykey)
  .put({
    gid: 20013,
    uid: 20013,
    col1: '表格存储',
    col2: '2',
    col3: 3.1,
    col4: -0.32,
    col5: 123456789,
  });

读取一行数据

暂未实现 columnFilter 的参数组装;

const res = await tj.row('sampleTable')
  .maxVersions(2)
  .primaryKey({
    gid: 20004,
    uid: 20004,
  })
  .get();

更新一行数据

const { RowExistenceExpectation } = require('tablestore-js');

const res = await tj.row('sampleTable')
  .primaryKey({
    gid: 9,
    uid: 90,
  })
  .rowExistenceExpectation(RowExistenceExpectation.IGNORE)
  .update({
    PUT: {
      col4: 4,
      col5: '5',
      col6: 6,
    },
    DELETE: {
      col1: 1496826473186,
    },
    DELETE_ALL: ['col2'],
  });

删除一行数据

const { RowExistenceExpectation } = require('tablestore-js');

const res = await tj.row('sampleTable')
  .rowExistenceExpectation(RowExistenceExpectation.IGNORE)
  .primaryKey({
    gid: 8,
    uid: 80,
  })
  .delete;

多行数据操作

以下操作等同于官方文档 多行数据操作

批量读

以下仅对接口操作封装,文档中重试逻辑需要自行实现;

const res = await tj.batch.getRow([
  {
    tableName: 'sampleTable',
    primaryKey: [
      { gid: 20013, uid: 20013 },
      { gid: 20015, uid: 20015 },
    ],
    startColumn: 'col2',
    endColumn: 'col4',
  },
  {
    tableName: 'notExistTable',
    primaryKey: [{ gid: 10001, uid: 10001 }],
  },
]);

批量写

const res = await tj.batch.writeRow([{
  tableName: 'sampleTable',
  rows: [{
    type: 'PUT',
    rowExistenceExpectation: RowExistenceExpectation.IGNORE,
    returnType: ReturnType.Primarykey,
    rowChange: {
      gid: 8,
      uid: 80,
      attrCol1: 'test1',
      attrCol2: 'test2',
    },
  }],
}]);

范围读

const res = await tj.batch.getRange({
  tableName: 'sampleTable',
  direction: TableStore.Direction.FORWARD,
  inclusiveStartPrimaryKey: {
    gid: INF.MIN,
    uid: INF.MIN,
  },
  exclusiveEndPrimaryKey: {
    gid: INF.MAX,
    uid: INF.MAX,
  },
  limit: 50,
});

多元索引查询操作

以下操作等同官方文档:

精确查询

TermQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.TERM_QUERY,
    fieldName: 'Col_Keyword',
    value: 'hangzhou',
  }]);
TermsQuery
const { QueryType } = require('tablestore-js');

res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.TERMS_QUERY,
    fieldName: 'Col_Keyword',
    value: ['hangzhou', 'shanghai'],
  }]);

匹配查询

MatchAllQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .returnFields(['Col_1', 'Col_2', 'Col_3'])
  .query([{
    queryType: QueryType.MATCH_ALL_QUERY,
  }]);
MatchQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.MATCH_QUERY,
    fieldName: 'Col_Keyword',
    value: 'hangzhou',
  }]);
MatchPhraseQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.MATCH_PHRASE_QUERY,
    fieldName: 'Col_Text',
    value: 'hangzhou shanghai',
  }]);

前缀查询

const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.PREFIX_QUERY,
    fieldName: 'Col_Keyword',
    value: 'hang',
  }]);

范围查询

const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.RANGE_QUERY,
    fieldName: 'Col_Long',
    options: {
      rangeFrom: 1,
      includeLower: true,
      rangeTo: 10,
      includeUpper: false,
    },
  }]);

通配符查询

const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.WILDCARD_QUERY,
    fieldName: 'Col_Keyword',
    value: 'table*e',
  }]);

地理位置查询

GeoBoundingBoxQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.GEO_BOUNDING_BOX_QUERY,
    fieldName: 'Col_GeoPoint',
    options: {
      topLeft: '10,0',
      bottomRight: '0,10',
    },
  }]);
GeoDistanceQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.GEO_DISTANCE_QUERY,
    fieldName: 'Col_GeoPoint',
    options: {
      centerPoint: '1,1',
      distance: 10000,
    },
  }]);
GeoPolygonQuery
const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.GEO_POLYGON_QUERY,
    fieldName: 'Col_GeoPoint',
    options: {
      points: ['0,0', '5,5', '5,0'],
    },
  }]);

嵌套类型查询

const { QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .query([{
    queryType: QueryType.TERM_QUERY,
    fieldName: 'Col_Nested.Sub_Col_Keyword',
    value: 'hangzhou',
  }]);

多条件组合查询

const { BoolQueryType, QueryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .boolType(BoolQueryType.MUST_QUERIES)
  .minimumShouldMatch(1)
  .query([
    {
      queryType: QueryType.RANGE_QUERY,
      fieldName: 'Col_Long',
      options: {
        rangeFrom: 3,
        includeLower: true,
      },
    },
    {
      queryType: QueryType.TERM_QUERY,
      fieldName: 'Col_Keyword',
      value: 'hangzhou',
    },
  ]);

排序和翻页

查询时指定排序方式
ScoreSort
const { SortOrder } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .scoreSort(SortOrder.ASC)
  .query();
PrimaryKeySort
const { SortOrder } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .primaryKeySort(SortOrder.DESC)
  .query();
FieldSort
const { SortOrder } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .fieldSort({
    Col_Keyword: SortOrder.DESC,
    Col_Long: SortOrder.DESC,
  })
  .query();
GeoDistanceSort
const { SortOrder } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .geoDistanceSort({
    fieldName: 'Col_Geo_Point',
    points: ['0,0'],
    order: SortOrder.ASC,
  })
  .query();
翻页方式
使用 limit 和 offset
const { queryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(90)
  .limit(10)
  .query([{
    queryType: QueryType.MATCH_ALL_QUERY,
  }]);
使用 token 进行翻页
const { queryType } = require('tablestore-js');

const res = await tj.search(TABLE_NAME)
  .indexName(INDEX_NAME)
  .offset(0)
  .limit(10)
  .token(null)
  .returnFields(['pic_tag', 'pic_description', 'time', 'pos'])
  .query([{
    queryType: QueryType.MATCH_ALL_QUERY,
  }]);