synaptic-population
v1.3.0
Published
A population of neural networks built over synapticjs using evolution process instead of backpropagation
Downloads
5
Maintainers
Readme
js-synaptic-population
A population of neural networks built over (synapticjs)[https://caza.la/synaptic/] using evolution process instead of backpropagation
Installation
npm i synaptic-population
Usage
import Population from 'synaptic-population'; // es6 import
or
const Population = require('synaptic-population'); // classic nodejs require
// Create a population with some optionals rules
const population = new Population({
demography : 10, // Number of brains in the population. Default 10.
eliteDemography : 4, // Number of brains that will survive natural selection on each generation. Default 4.
extinctionFitness : null, // If all brains in a generation get a lower score that this parameter, then all the population is reset. Default null.
inputs : 1, // Number of inputs required to activate brains. Default 2.
outputs : 1, // Number of outputs returned from the brains. Default 1.
hiddenLayers : [8], // Array of numbers representing the hidden layers neurons. Default [8] (one hidden layer of 8 neurons)
mutateRate : 0.2, // Mutation rate from 0 (no mutation) to 1 (full mutation) applied when evolving
trainedPop: null // Retrieve a previously exported population (see method toJSON())
});
// Activate brains
population.activateBrain(brainID, inputs);
// Set fitness of brains
population.setBrainFitness(brainID, fitness);
// Evolve
population.evolve();
// And do it again until your population does what you want them to do !
See x
API
Properties
- brains : array READ-ONLY // Array of neural networks.
- demography : int READ-ONLY, // Number of brains in the population. Default 10 .
- eliteDemography : int READ-ONLY, // Number of brains that will survive natural selection on each generation. Default 4.
- extinctionFitness : number or null READ-ONLY, // If all brains in a generation get a lower score that this parameter, then all the population is reset. Default null.
- generation : int READ-ONLY // Number of generation that occurred into the population.
- hiddenLayers : array of int READ-ONLY, // Array of numbers representing the hidden layers neurons. Default [8] (one hidden layer of 8 neurons)
- inputs : int READ-ONLY, // Number of inputs required to activate brains. Default 1.
- mutateRate : float [0-1] // Mutation rate from 0 (no mutation) to 1 (all the children mutates) applied when evolving. Default 0.2.
- mutateFactor : int // The degree of mutation applied when mutating a child. Default 3.
- outputs : int READ-ONLY, // Number of outputs returned from the brains. Default 1.
- trainedPop: JSON object READ-ONLY // retrieve a previously exported population (see method toJSON()). Default null.
Methods
// Create a population with some optionals rules
constructor({
- demography = 10, // Number of brains in the population. Default 10.
- eliteDemography = 4, // Number of brains that will survive natural selection on each generation. Default 4.
- extinctionFitness = null, // If all brains in a generation get a lower score that this parameter, then all the population is reset. Default null.
- inputs = 2, // Number of inputs required to activate brains. Default 2.
- outputs = 1, // Number of outputs returned from the brains. Default 1.
- hiddenLayers = [8], // Array of numbers representing the hidden layers neurons. Default [8] (one hidden layer of 8 neurons)
- mutateRate = 0.2, // Mutation rate from 0 (no mutation) to 1 (full mutation) applied when evolving. Default 0.2
- trainedPop = null // Retrieve a previously exported population (see method toJSON()). Default null
});
// Activate a brain neurons with inputs array
- activateBrain(id, inputs) id : the brain (individual) ID in your population inputs : an inputs array for activating neurons
// Set the fitness of a brain
- setBrainFitness(id, fitness) id : the brain (individual) ID in your population fitness : the score to assign to the brain
// Returns a brain given its ID
- getBrain(id) id : the brain (individual) ID in your population
// Keep the bests, kill the rest and replace them with children of the bests
- evolve()
// Reset the population to generation 0, all training is lost
- reset()
// Export the current population into JSON object
- toJSON()