synapses
v8.0.2
Published
A neural networks library for JavaScript
Downloads
4
Maintainers
Readme
synapses.js
A neural networks library for JavaScript!
Basic usage
Install synapses
npm i [email protected]
Require the library
const syn = require('synapses');
Create a random neural network by providing its layer sizes
let randNet = new syn.Net({layers: [2, 3, 1]});
- Input layer: the first layer of the network has 2 nodes.
- Hidden layer: the second layer has 3 neurons.
- Output layer: the third layer has 1 neuron.
Get the json of the random neural network
randNet.json();
// "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" +
// " ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," +
// " {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," +
// "[{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"
Create a neural network by providing its json
let net = new syn.Net({
json:
"[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" +
" ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," +
" {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," +
" [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"
});
Make a prediction
net.predict([0.2, 0.6]);
// [ 0.49131100324012494 ]
Train a neural network
net.fit(0.1, [0.2, 0.6], [0.9]);
The fit
method adjusts the weights of the neural network to a single observation.
In practice, for a neural network to be fully trained, it should be fitted with multiple observations.
Advanced usage
Create a neural network for testing
new syn.Net({layers: [2, 3, 1], seed: 1000});
We can provide a seed
to create a non-random neural network.
This way, we can use it for testing.
Define the activation functions and the weights
function activation(layerIndex) {
switch (layerIndex) {
case 0:
return syn.fun.SIGMOID;
case 1:
return syn.fun.IDENTITY;
case 2:
return syn.fun.LEAKY_RE_LU;
case 3:
return syn.fun.TANH;
}
}
function weight(_layerIndex) {
return 1.0 - 2.0 * Math.random();
}
let customNet = new syn.Net({
layers: [4, 6, 8, 5, 3],
activation: activation,
weight: weight
});
- The
activation
function accepts the index of a layer and returns an activation function for its neurons. - The
weight
function accepts the index of a layer and returns a weight for the synapses of its neurons.
If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
Draw a neural network
customNet.svg();
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
Measure the difference between the expected and predicted values
let expAndPredVals = [
[[0.0, 0.0, 1.0], [0.0, 0.1, 0.9]],
[[0.0, 1.0, 0.0], [0.8, 0.2, 0.0]],
[[1.0, 0.0, 0.0], [0.7, 0.1, 0.2]],
[[1.0, 0.0, 0.0], [0.3, 0.3, 0.4]],
[[0.0, 0.0, 1.0], [0.2, 0.2, 0.6]]
];
- Root-mean-square error
syn.stats.rmse(expAndPredVals);
// 0.6957010852370435
- Classification accuracy score
syn.stats.score(expAndPredVals);
// 0.6
Create a Codec
by providing the attributes and the data points
- One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
- Minmax normalization scales continuous attributes into values between 0.0 and 1.0.
You can use a codec to encode and decode a data point.
let setosa = {
petal_length: "1.5",
petal_width: "0.1",
sepal_length: "4.9",
sepal_width: "3.1",
species: "setosa"
};
let versicolor = {
petal_length: "3.8",
petal_width: "1.1",
sepal_length: "5.5",
sepal_width: "2.4",
species: "versicolor"
};
let virginica = {
petal_length: "6.0",
petal_width: "2.2",
sepal_length: "5.0",
sepal_width: "1.5",
species: "virginica"
};
let dataset = [setosa, versicolor, virginica];
let attributes = [
["petal_length", false],
["petal_width", false],
["sepal_length", false],
["sepal_width", false],
["species", true],
];
let codec = new syn.Codec({attributes: attributes, data: dataset});
- The first parameter is a list of pairs that define the name and the type (discrete or not) of each attribute.
- The second parameter is an iterator that contains the data points.
Get the json of the codec
let codecJson = codec.json();
// "[{\"Case\" : \"SerializableContinuous\", " +
// "\"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]}," +
// "{\"Case\" : \"SerializableContinuous\", " +
// "\"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]}," +
// "{\"Case\" : \"SerializableContinuous\", " +
// "\"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]}," +
// "{\"Case\" : \"SerializableContinuous\", " +
// "\"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]}," +
// "{\"Case\" : \"SerializableDiscrete\", " +
// "\"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"
Create a Codec
by providing its json
new syn.Codec({json: codecJson})
Encode a data point
let encodedSetosa = codec.encode(setosa);
// [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0 ]
Decode a data point
codec.decode(encodedSetosa);
// {
// petal_length: "1.5",
// petal_width: "0.1",
// sepal_length: "4.9",
// sepal_width: "3.1",
// species: "setosa"
// }