npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

swisseph-v2

v1.0.3

Published

Enhanced Swiss Ephemeris Bindings for Modern Node.js: Leveraging the latest Node.js features for precise astronomical calculations

Downloads

63

Readme

swisseph - Swiss Ephemeris for Node.js (Updated Version)

Overview

This project is an updated version of the swisseph library, originally designed to provide Swiss Ephemeris calculations for Node.js applications. The Swiss Ephemeris is a highly precise ephemeris developed by Astrodienst AG, used for astrological calculations.

The original swisseph project made the power of the Swiss Ephemeris accessible to Node.js developers but was not maintained for compatibility with the latest versions of Node.js. This fork aims to update the library, ensuring it works seamlessly with the most recent Node.js and npm versions, thereby extending its utility to the current development environment.

This work builds upon the original swisseph project. The original project can be found at [\https://www.npmjs.com/package/swisseph]. I am deeply grateful to author for their pioneering work on making the Swiss Ephemeris accessible to the Node.js community. This updated version stands as a testament to the foundational work laid by the original author(s).

See Swiss Ephemeris for more details.

Visit our website: shilaavinyaas which uses this library for calculations.

Supported platforms: Mac OS X | Windows | Linux | FreeBSD

Getting started

To install run:

$ npm install swisseph-v2

Requirements

Compatibility with the latest Node.js versions. All original swisseph functionality preserved and made accessible for modern Node.js environments.

Usage

Getting julian day


import  * as Swisseph from 'swisseph-v2';

export default class vBase {

	static setHouseMethod(hsys:string) {
        this.houseMethod = hsys;
    }

    static setEphemeridesPath(path: string | null = null) {
        if (path) {
            Swisseph.swe_set_ephe_path(path);
        }
    }

	 static getPlanet(date: Date, planet: number):any {
        const julianDate = this.toJulianUTCDate(date);
        const flags = Swisseph.SEFLG_SPEED;
        const planetData = Swisseph.swe_calc_ut(julianDate, planet, flags);
        return planetData;
    }


    static toJulianUTCDate(date: Date) {
        const julianDay = Swisseph.swe_utc_to_jd(
             date.getUTCFullYear(), 
             date.getUTCMonth() + 1, 
             date.getUTCDate(), 
             date.getUTCHours(), 
             date.getUTCMinutes(), 
             0,
             Swisseph.SE_GREG_CAL
         );

         let jdUT : any;
         if ('julianDayUT' in julianDay) {
            jdUT =julianDay.julianDayUT;
         }else if ('error' in julianDay) {
             // Handle the error case
             jdUT = julianDay.error;
         }
         return jdUT;
     }

	     static toGregorianUTCDate(julianDate:number):any {
        return Swisseph.swe_jdut1_to_utc(julianDate, Swisseph.SE_GREG_CAL);
    }

}
var swisseph = require ('swisseph-v2');

var date = {year: 2015, month: 1, day: 1, hour: 0};

var julday = swisseph.swe_julday (date.year, date.month, date.day, date.hour, swisseph.SE_GREG_CAL);

Getting Sun and Moon position

Example:

var swisseph = require ('swisseph-v2');

// Test date
var date = {year: 2012, month: 1, day: 1, hour: 0};
console.log ('Test date:', date);

var flag = swisseph.SEFLG_SPEED;

// path to ephemeris data
swisseph.swe_set_ephe_path (__dirname + '/../ephe');

// Julian day
swisseph.swe_julday (date.year, date.month, date.day, date.hour, swisseph.SE_GREG_CAL, function (julday_ut) {
	assert.equal (julday_ut, 2455927.5);
	console.log ('Julian UT day for date:', julday_ut);

	// Sun position
	swisseph.swe_calc_ut (julday_ut, swisseph.SE_SUN, flag, function (body) {
		assert (!body.error, body.error);
		console.log ('Sun position:', body);
	});

	// Moon position
	swisseph.swe_calc_ut (julday_ut, swisseph.SE_MOON, flag, function (body) {
		assert (!body.error, body.error);
		console.log ('Moon position:', body);
	});
});

For more examples see examples and test folders.

Using ecliptic, equatorial or rectangular coordinates

On computing planet, star, node or apside positions, and using SEFLG_EQUATORIAL or SEFLG_XYZ in flag bits, name of the resulting property will be different from the case with ecliptic coordinates. Run examples/issue-23.js in details, please.

Ephemeris settings

There are 3 different types of ephemeris supported:

  • Steve Moshier interpolation, covers 3000 BC – 3000 AD, preision 0.1 arcsec, no data files required.
  • Swiss Ephemeris is compressed version of DE431, covers 13000 BC - 17000 AD, precision 0.001 arcseconds, requires data files about 90MB. Download from ftp://www.astro.com/pub/swisseph/ephe.
  • JPL NASA ephemeris is the state of the art ephemeris, DE431 covers 13000 BC - 17000 AD, maximum possible precision, requires data files 2.9GB. Download from ftp://www.astro.com/pub/jplfiles.

To use data files download them and put in folder then set path to the ephemeris folder by:

swisseph.swe_set_ephe_path ('/path/to/downloaded/ephemeris');

And select ephemeris by setting the flag:


// for Moshier
body = swisseph.swe_calc_ut (julday_ut, swisseph.SE_SUN, swisseph.SEFLG_SPEED | swisseph.SEFLG_MOSEPH)

// for Swiss Ephemeris
body = swisseph.swe_calc_ut (julday_ut, swisseph.SE_SUN, swisseph.SEFLG_SPEED | swisseph.SEFLG_SWIEPH)

// for JPL NASA ephemeris
body = swisseph.swe_calc_ut (julday_ut, swisseph.SE_SUN, swisseph.SEFLG_SPEED | swisseph.SEFLG_JPLEPH)

Tests

To execute tests run from the root folder:

npm test

Documentation

See Programming interface to the Swiss Ephemeris for more details.

This javascript programming interface is little different from the original api, basically for return values. For more details see src/*.h.

Feedback

Please feel free to fill issues for bugs, erros and features.

License

The license for this project is the same as original Swiss Ephemeris.