npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

svd-js

v1.1.1

Published

A package for the computation of Singular Value Decomposition

Downloads

17,670

Readme

SVD-JS

Build Status Coverage Status JavaScript Style Guide npm

A simple library to compute Singular Value Decomposition as explained in "Singular Value Decomposition and Least Squares Solutions. By G.H. Golub et al."

Usage

SVD(a, withu, withv, eps, tol) => { u, v, q }

computes the singular values and complete orthogonal decomposition of a real rectangular matrix

A: A = U * diag(q) * V(t), U(t) * U = V(t) * V = I

The actual parameters corresponding to A, U, V may all be identical unless withu = withv = {true}. In this case, the actual parameters corresponding to U and V must differ. m >= n is assumed (with m = a.length and n = a[0].length). The following is the description of all parameters:

  • a {Array}: Represents the matrix A to be decomposed
  • withu (Optional default is true) {bool | 'f'}: true if U is desired false otherwise. It can also be 'f' (see below)
  • withv (Optional default is true) {bool}: true if V is desired false otherwise
  • eps (Optional) {Number}: A constant used in the test for convergence; should not be smaller than the machine precision
  • tol (Optional) {Number}: A machine dependent constant which should be set equal to B/eps where B is the smallest positive number representable in the computer

The function returns an object with the following values:

  • q: A vector holding the singular values of A; they are non-negative but not necessarily ordered in decreasing sequence
  • u: Represents the matrix U with orthonormalized columns (if withu is true otherwise u is used as a working storage)
  • v: Represents the orthogonal matrix V (if withv is true, otherwise v is not used)

If 'f' is given to withu, it computes 'full' U with m*m dimension. It is an extension in (i) of '5. Organization and Notation Details' in Golub et al." The extension part of U (u[n] to u[m-1]) are orthonormal bases of A that correspond to null singular values, or the nullspace of A^T.

npm package

Golub and Reinsch first example

import { SVD } from 'svd-js'
const a = [
      [22, 10, 2, 3, 7],
      [14, 7, 10, 0, 8],
      [-1, 13, -1, -11, 3],
      [-3, -2, 13, -2, 4],
      [9, 8, 1, -2, 4],
      [9, 1, -7, 5, -1],
      [2, -6, 6, 5, 1],
      [4, 5, 0, -2, 2]
    ]

const { u, v, q } = SVD(a)
console.log(u)
console.log(v)
console.log(q)
umd package

Golub and Reinsch first example

<html>
 <script src="https://unpkg.com/svd-js" type="application/javascript"></script>
 <script>
   const a = [
     [22, 10, 2, 3, 7],
     [14, 7, 10, 0, 8],
     [-1, 13, -1, -11, 3],
     [-3, -2, 13, -2, 4],
     [9, 8, 1, -2, 4],
     [9, 1, -7, 5, -1],
     [2, -6, 6, 5, 1],
     [4, 5, 0, -2, 2]
   ]

   const { u, v, q } = SVDJS.SVD(a)
   console.log(u)
   console.log(v)
   console.log(q)
 </script>
</html>