statkit
v0.2.0
Published
Statistics toolkit
Downloads
40
Maintainers
Readme
statkit
A statistics toolkit for javascript.
Usage
Install using npm:
npm install statkit
Fit a linear regression model using MCMC:
var sk = require("statkit.js");
// log-likelihood for the model y ~ N(m*x + b, 1/t)
function lnlike(theta, x, y) {
var m = theta[0], b = theta[1], t = theta[2];
var s = 0.0;
for (var i = 0; i < x.length; i++) {
var r = y[i] - (m * x[i] + b);
s += r*r*t - Math.log(t);
}
return -0.5*s;
}
// uniform log-prior for m, b, t
function lnprior(theta) {
var m = theta[0], b = theta[1], t = theta[2];
if (0.0 < m && m < 1.0 && 0.0 < b && b < 10.0 && 0.0 < t && t < 100.0) {
return 0.0;
}
return -Infinity;
}
// posterior log-probability function
function lnpost(theta, x, y) {
var lp = lnprior(theta);
if (!isFinite(lp)) {
return -Infinity;
}
return lp + lnlike(theta, x, y);
}
var x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5];
var y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68];
var res = sk.metropolis(function(theta) { return lnpost(theta, x, y); },
[0.5, 3.0, 1.0], 1000000, 0.1, 50000, 100);
console.log('acceptance rate:', res.accepted)
console.log('posteriors (16/50/84 percentiles):')
console.log('m', sk.quantile(res.chain[0], 0.16),
sk.median(res.chain[0]), sk.quantile(res.chain[0], 0.84))
console.log('b', sk.quantile(res.chain[1], 0.16),
sk.median(res.chain[1]), sk.quantile(res.chain[1], 0.84))
console.log('t', sk.quantile(res.chain[2], 0.16),
sk.median(res.chain[2]), sk.quantile(res.chain[2], 0.84))
Calculate a confidence interval for a correlation using the bootstrap method:
var sk = require("statkit");
var lsat = [576, 635, 558, 578, 666, 580, 555,
661, 651, 605, 653, 575, 545, 572, 594];
var gpa = [3.39, 3.30, 2.81, 3.03, 3.44, 3.07, 3.00,
3.43, 3.36, 3.13, 3.12, 2.74, 2.76, 2.88, 2.96];
var corr = sk.corr(gpa, lsat);
var ci = sk.bootci(100000, sk.corr, gpa, lsat);
console.log("corr = ", corr, "ci = ", ci);
Perform a linear regression on the first data set in Anscombe's quartet:
var sk = require("statkit");
var x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5];
var y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68];
var A = new Array(x.length*2);
for (var i = 0; i < x.length; ++i) {
A[2*i] = 1;
A[2*i + 1] = x[i];
}
var b = sk.lstsq(x.length, 2, A, y);
console.log("intercept = ", b[0], "slope = ", b[1]);
Functions
min(a)
- Minimummax(a)
- Maximumrange(a)
- Rangequantile(a)
- Quantilemedian(a)
- Medianiqr(a)
- Interquartile rangemean(a)
- Meangmean(a)
- Geometric meanhmean(a)
- Harmonic meanvar(a)
- Variancestd(a)
- Standard deviationskew(a)
- Skewnesskurt(a)
- Kurtosiscorr(x, y)
- Correlation between x and yentropy(p)
- Entropykldiv(p, q)
- Kullback–Leibler divergenceshuffle(a)
- Shuffle using the Fisher–Yates shufflesample(a)
- Sample with replacementboot(nboot, bootfun, data...)
- Bootstrap the bootfun statisticbootci(nboot, bootfun, data...)
- Calculate bootstrap confidence intervals using the normal modelrandn()
- Draw random sample from the standard normal distribution using the Marsaglia polar methodnormcdf(x)
- Normal cumulative distribution functionnorminv(p)
- Normal inverse cumulative distribution functionlufactor(A, n)
- Compute pivoted LU decompositionlusolve(LU, p, b)
- SolveAx=b
given the LU factorization ofA
qrfactor(m, n, A)
- Compute QR factorization of Aqrsolve(m, n, QR, tau, b)
- Solve the least squares problemmin ||Ax = b||
using QR factorizationQR
ofA
lstsq(m, n, A, b)
- Solve the least squares problemmin ||Ax = b||
metropolis(lnpost, p, iterations, scale, burn, thin)
- Sample fromlnpost
starting atp
using the Metropolis-Hastings algorithm
Credits
(c) 2015 Erik Rigtorp [email protected]. MIT License