squoval
v0.3.2
Published
flatter and smoother rounded corners
Downloads
17
Readme
$$ \begin{align*} x &= \mathrm{erf}\ \mathrm{atanh}\ \mathrm{cos}\ t \ y &= \mathrm{erf}\ \mathrm{atanh}\ \mathrm{sin}\ t \end{align*} $$
Squoval
flatter and smoother rounded corners · web components
npm i squoval
<script src="https://cdn.skypack.dev/squoval?min" type="module"></script>
<squoval-element></squoval-element>
proof notes
let us say that f(t) = erf(cot(t)) h(t) = erf t h'(t) = 2 e^(-z^2) / √π g(t) = cot t g'(t) = csc² t
the chain rule states that f'(x) = h'(g(t))g'(t) so f'(t) = (2 / √π) e^(-cot² t) csc² t
the product rule states that (uv)' = u'v + uv' so u' = (e^(-cot² t))' = -2 cot(t) csc²(t) e^(-cot² t)
u' = -2 cot(t) csc²(t) u
f⁽ⁿ⁾(t) ∝ u ∝ e^(-cot² t)
therefore f(t) is flat wherever e^(-cot² t) = 0
limit of e^(-cot² t) as t -> 0 = 0
limit of e^(-cot² t) as t -> nπ = 0
f(t) is asymptotically flat at nπ where n is an integer