npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

sql-select

v3.0.1

Published

A js library for performing SQL like queries on arrays of objects.

Downloads

20

Readme

sql-select

A js library for performing SQL like queries on arrays of objects.

Quick start

npm install sql-select
import { SELECT, FROM, SUM, AVG, WHERE, GROUP_BY, ORDER_BY, DESC, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { name: 'John', salary: 20 },
    { name: 'James', salary: 30 },
    { name: 'Joe', salary: 50 },
    { name: 'John', salary: 100 },
    { name: 'James', salary: 130 },
    { name: 'Joe', salary: 150 },
    { name: 'John', salary: 10 }
]

// returns the selected columns in an array of objects
const query = () =>
SELECT('name',
    SUM('salary', AS('sum')),
    AVG('salary', AS('avg')),
FROM(input),
WHERE(row => row.salary > 15),
GROUP_BY('name'),
ORDER_BY('sum', DESC))

// drawTable turns the result into tabular format
console.log(drawTable(query()))
/*
+-------+-----+-----+
| name  | sum | avg |
+-------+-----+-----+
| Joe   | 200 | 100 |
| James | 160 |  80 |
| John  | 120 |  60 |
+-------+-----+-----+
3 rows selected
*/

Table of Contents

Introduction

Features:

  • direct use of array(s) of objects => no need to build schemas, databases, tables
  • functions (instead of strings or object oriented constructs) are used to write queries
  • dependency-free, lightweight (less than 8KB, minified and gzipped)
  • can be used even in the browser
  • specially written for js objects
  • custom js functions can be used as scalar functions
  • user defined predicates are used for filtering (where, having)

Do not use the library for:

  • big data => the library is optimized for small and middle sized tables
  • complex queries => subqueries, set operations are not supported
  • complex data types => only number and string data types are supported

Select

A simple query example:

import { SELECT, FROM } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', age: 22, city: 'London' },
    { id: 2, name: 'Joe', age: 33, city: 'Paris' },
    { id: 3, name: 'James', age: 44, city: 'Berlin' }
]

// returns the selected columns in an array of objects
// all input tables are treated as read-only
// SELECT_TOP, SELECT_DISTINCT, SELECT_DISTINCT_TOP are also supported
const query = () =>
SELECT('id', 'age', 'name',
FROM(input))

// drawTable turns the result into tabular format
console.log(drawTable(query()))
/*
+----+-----+-------+
| id | age | name  |
+----+-----+-------+
|  1 |  22 | John  |
|  2 |  33 | Joe   |
|  3 |  44 | James |
+----+-----+-------+
3 rows selected
*/

Note: sql-select-utils library can also be downloaded from npm.

With asterisk:

import { SELECT, FROM } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', age: 22, city: 'London' },
    { id: 2, name: 'Joe', age: 33, city: 'Paris' },
    { id: 3, name: 'James', age: 44, city: 'Berlin' }
]

// returns all columns
const query = () =>
SELECT('*',
FROM(input))

console.log(drawTable(query()))
/*
+----+-------+-----+--------+
| id | name  | age | city   |
+----+-------+-----+--------+
|  1 | John  |  22 | London |
|  2 | Joe   |  33 | Paris  |
|  3 | James |  44 | Berlin |
+----+-------+-----+--------+
3 rows selected
*/

Using heterogenous input table:

import { SELECT, FROM } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', age: 22 },
    { id: 2, name: 'Joe', age: 33, city: 'Paris' },
    { id: 3, name: 'James', age: undefined },
    { id: 4 }
]

// uses the first row as pattern
// ignores rest columns
// turns missing columns, undefined into null
const query = () =>
SELECT('*',
FROM(input))

console.log(drawTable(query()))
/*
+----+-------+------+
| id | name  |  age |
+----+-------+------+
|  1 | John  |   22 |
|  2 | Joe   |   33 |
|  3 | James | null |
|  4 | null  | null |
+----+-------+------+
4 rows selected
*/

From and joins

Inner join with ON:

import { SELECT, FROM, JOIN, ON } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'John', age: 5 },
    { id: 2, name: 'James', age: 15 },
]

const input2 = [
    { num: 1, age: 1 },
    { num: 1, age: 11 },
    { num: 2, age: 22 },
]

// JOIN is the short form for INNER_JOIN
// The first parameter of ON must be a column in the first table
// The second parameter of ON must be a column in the second table
// Any number of joins can be used
// The default names of the tables are t1, t2, t3 and so on
// Equi-join is used in ON
// Columns present in more tables have qualified names
// Columns present in only one table have unqualified names
const query = () =>
SELECT('*',
FROM(input1, JOIN, input2, ON('id', 'num')))

console.log(drawTable(query()))
/*
+----+-------+--------+-----+--------+
| id | name  | t1.age | num | t2.age |
+----+-------+--------+-----+--------+
|  1 | John  |      5 |   1 |      1 |
|  1 | John  |      5 |   1 |     11 |
|  2 | James |     15 |   2 |     22 |
+----+-------+--------+-----+--------+
3 rows selected
*/

Inner join with USING:

import { SELECT, FROM, INNER_JOIN, USING } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'John', age: 5 },
    { id: 2, name: 'James', age: 15 },
]

const input2 = [
    { id: 1, age: 1 },
    { id: 1, age: 11 },
    { id: 2, age: 22 },
]

// USING can be used when join-columns are present in both tables
// custom table name can also be used
// Equi-join is used in USING
// INNER_JOIN is the explicite form of JOIN
const query = () =>
SELECT('*',
FROM(input1, 'first', INNER_JOIN, input2, 'second', USING('id')))

console.log(drawTable(query()))
/*
+----+-------+-----------+------------+
| id | name  | first.age | second.age |
+----+-------+-----------+------------+
|  1 | John  |         5 |          1 |
|  1 | John  |         5 |         11 |
|  2 | James |        15 |         22 |
+----+-------+-----------+------------+
3 rows selected
*/

Three input tables with ON:

import { SELECT, FROM, JOIN, ON } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'John' },
    { id: 2, name: 'James' },
]

const input2 = [
    { id: 1, age: 1 },
    { id: 1, age: 11 },
    { id: 2, age: 22 },
]

// using id in subsequent ON-s => qualified name must be used
const query = () =>
SELECT('*',
FROM(input1, JOIN, input2, ON('id', 'id'),
             JOIN, input2, ON('t1.id', 'id')))

console.log(drawTable(query()))
/*
+-------+-------+-------+--------+-------+--------+
| t1.id | name  | t2.id | t2.age | t3.id | t3.age |
+-------+-------+-------+--------+-------+--------+
|     1 | John  |     1 |      1 |     1 |      1 |
|     1 | John  |     1 |      1 |     1 |     11 |
|     1 | John  |     1 |     11 |     1 |      1 |
|     1 | John  |     1 |     11 |     1 |     11 |
|     2 | James |     2 |     22 |     2 |     22 |
+-------+-------+-------+--------+-------+--------+
5 rows selected
*/

Three input tables with USING:

import { SELECT, FROM, JOIN, USING } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'John' },
    { id: 2, name: 'James' },
]

const input2 = [
    { id: 1, age: 1 },
    { id: 1, age: 11 },
    { id: 2, age: 22 },
]

// in all USING-s unqualified column names are used
const query = () =>
SELECT('*',
FROM(input1, JOIN, input2, USING('id'),
             JOIN, input2, USING('id')))

console.log(drawTable(query()))
/*
+----+-------+--------+--------+
| id | name  | t2.age | t3.age |
+----+-------+--------+--------+
|  1 | John  |      1 |      1 |
|  1 | John  |      1 |     11 |
|  1 | John  |     11 |      1 |
|  1 | John  |     11 |     11 |
|  2 | James |     22 |     22 |
+----+-------+--------+--------+
5 rows selected
*/

Outer join:

import { SELECT, FROM, LEFT_JOIN, ON } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'A' },
    { id: 2, name: 'B' },
    { id: 3, name: 'C' },
    { id: null, name: 'D' },
    { id: 3, name: 'E' },
    { id: 4, name: 'F' },
    { id: null, name: 'G' }
]

const input2 = [
    { id: 3, age: 1 },
    { id: 4, age: 11 },
    { id: 4, age: 22 },
    { id: null, age: 33 },
    { id: 5, age: 44 },
    { id: 6, age: 55 },
    { id: null, age: 66 }
]

// RIGHT_JOIN and FULL_JOIN are also supported
const query = () =>
SELECT('*',
FROM(input1, LEFT_JOIN, input2, ON('id', 'id')))

console.log(drawTable(query()))
/*
+-------+------+-------+------+
| t1.id | name | t2.id |  age |
+-------+------+-------+------+
|     1 | A    |  null | null |
|     2 | B    |  null | null |
|     3 | C    |     3 |    1 |
|  null | D    |  null | null |
|     3 | E    |     3 |    1 |
|     4 | F    |     4 |   11 |
|     4 | F    |     4 |   22 |
|  null | G    |  null | null |
+-------+------+-------+------+
8 rows selected
*/

Cross join:

import { SELECT, FROM, CROSS_JOIN, ON } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input1 = [
    { id: 1, name: 'A' },
    { id: 2, name: 'B' }
]

const input2 = [
    { id: 3, age: 1 },
    { id: 4, age: 11 }
]

// with crossjoin ON/USING can not be used
// even CROSS_JOIN can be left out
const query = () =>
SELECT('*',
FROM(input1, CROSS_JOIN, input2))

console.log(drawTable(query()))
/*
+-------+------+-------+-----+
| t1.id | name | t2.id | age |
+-------+------+-------+-----+
|     1 | A    |     3 |   1 |
|     1 | A    |     4 |  11 |
|     2 | B    |     3 |   1 |
|     2 | B    |     4 |  11 |
+-------+------+-------+-----+
4 rows selected
*/

Where

An example using WHERE:

import { SELECT, FROM, WHERE } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', size: 10 },
    { id: 2, name: 'Joe', size: 12 },
    { id: 3, name: 'James', size: 8 }
]

// row['size'], row["size"], row[`size`] forms are also acceptable
const query = () =>
SELECT('id', 'name', 'size',
FROM(input),
WHERE(row => row.size > 9))

console.log(drawTable(query()))
/*
+----+------+------+
| id | name | size |
+----+------+------+
|  1 | John |   10 |
|  2 | Joe  |   12 |
+----+------+------+
2 rows selected
*/

Scalar functions

Simple and nested scalar functions:

import { SELECT, FROM, ADD, SUB, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', size: 10, type: 8 },
    { id: 2, name: 'Joe', size: 12, type: 6 },
    { id: 3, name: 'James', size: 8, type:4 }
]

// last parameter of every function must be AS (column alias)
// AS can not be used in nested functions
// column aliases can be used in later scalar functions
// strings with colons are treated as values (not column names)
const query = () =>
SELECT('id', 'name', 'size', 'type',
    ADD('size', 'type', AS('add1')),
    ADD(ADD('size', 'type'), 10, SUB('size', 'type'), AS('add2')),
    ADD('add1', 'add2', AS('add3')),
    ADD(':Mr. :', 'name', AS('full_name')),
FROM(input))

console.log(drawTable(query()))
/*
+----+-------+------+------+------+------+------+-----------+
| id | name  | size | type | add1 | add2 | add3 | full_name |
+----+-------+------+------+------+------+------+-----------+
|  1 | John  |   10 |    8 |   18 |   30 |   48 | Mr. John  |
|  2 | Joe   |   12 |    6 |   18 |   34 |   52 | Mr. Joe   |
|  3 | James |    8 |    4 |   12 |   26 |   38 | Mr. James |
+----+-------+------+------+------+------+------+-----------+
3 rows selected
*/

Custom scalar function:

import { SELECT, FROM, AS, createFn } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John' },
    { id: 2, name: 'Joe' },
    { id: 3, name: 'James' }
]

// creating custom scalar function is extremely easy:
// just call createFn with your function and use the returned function
const toUpper = str => str.toUpperCase()
const TO_UPPER = createFn(toUpper)

// using custom scalar function
const query = () =>
SELECT('id', 'name',
    TO_UPPER('name', AS('uppercased_name')),
FROM(input))

console.log(drawTable(query()))
/*
+----+-------+-----------------+
| id | name  | uppercased_name |
+----+-------+-----------------+
|  1 | John  | JOHN            |
|  2 | Joe   | JOE             |
|  3 | James | JAMES           |
+----+-------+-----------------+
3 rows selected
*/

Aggregate functions

Normal aggregate functions:

import { SELECT, FROM, COUNT, SUM, AVG, MAX, MIN, ADD, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', size: 10 },
    { id: 2, name: 'Joe', size: 10 },
    { id: 3, name: 'James', size: null },
    { id: 4, name: 'Peter', size: 4 }
]

// custom aggregate functions are not supported
const query = () =>
SELECT(
    COUNT('*', AS('count_all')),
    COUNT('size', AS('count')),
    SUM('size', AS('sum')),
    AVG('size', AS('avg')),
    MAX('size', AS('max')),
    MIN('size', AS('min')),
    ADD('count_all', 'count', SUM('size'), 'avg', 'max', 'min', AS('total')),
FROM(input))

console.log(drawTable(query()))
/*
+-----------+-------+-----+-----+-----+-----+-------+
| count_all | count | sum | avg | max | min | total |
+-----------+-------+-----+-----+-----+-----+-------+
|         4 |     3 |  24 |   8 |  10 |   4 |    53 |
+-----------+-------+-----+-----+-----+-----+-------+
1 row selected
*/

Scalar and aggregate functions:

import { SELECT, FROM, SUM, MAX, MIN, ADD, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'

const input = [
    { id: 1, name: 'John', size: 10 },
    { id: 2, name: 'Joe', size: 10 },
    { id: 3, name: 'James', size: null },
    { id: 4, name: 'Peter', size: 4 }
]

// scalar functions can be nested in aggregate functions
const query = () =>
SELECT(
    SUM(ADD('size', 'id'), AS('sum')),
    MAX('size', AS('max')),
    MIN('size', AS('min')),
    ADD('sum', SUM(ADD('size', 'id')), 'max', 'min', AS('total')),
FROM(input))

console.log(drawTable(query()))
/*
+-----+-----+-----+-------+
| sum | max | min | total |
+-----+-----+-----+-------+
|  31 |  10 |   4 |    76 |
+-----+-----+-----+-------+
1 row selected
*/

Groupby

Create a data.js file:


// data.js
// from now on every file will import this array as input
export const input = [
    { id: 1, city: 'London', size: 10 },
    { id: 2, city: 'London', size: 10 },
    { id: 3, city: 'London', size: null },
    { id: 4, city: 'London', size: 4 },

    { id: 5, city: 'Paris', size: 12 },
    { id: 6, city: 'Paris', size: 10 },
    { id: 7, city: 'Paris', size: 8 },
    { id: 8, city: 'Paris', size: 6 },

    { id: 9, city: 'Berlin', size: 10 },
    { id: 10, city: 'Berlin', size: null },
    { id: 11, city: 'Berlin', size: null },
    { id: 12, city: 'Berlin', size: 4 }
]

Normal aggregate functions:

import { SELECT, FROM, GROUP_BY, COUNT, SUM, AVG, MAX, MIN, ADD, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'
import { input } from './data.js'

const query = () =>
SELECT('city',
    COUNT('*', AS('count_all')),
    COUNT('size', AS('count')),
    SUM('size', AS('sum')),
    AVG('size', AS('avg')),
    MAX('size', AS('max')),
    MIN('size', AS('min')),
    ADD('count_all', 'count', 'sum', AVG('size'), 'max', 'min', AS('total')),
FROM(input),
GROUP_BY('city'))

console.log(drawTable(query()))
/*
+--------+-----------+-------+-----+-----+-----+-----+-------+
| city   | count_all | count | sum | avg | max | min | total |
+--------+-----------+-------+-----+-----+-----+-----+-------+
| Berlin |         4 |     2 |  14 |   7 |  10 |   4 |    41 |
| London |         4 |     3 |  24 |   8 |  10 |   4 |    53 |
| Paris  |         4 |     4 |  36 |   9 |  12 |   6 |    71 |
+--------+-----------+-------+-----+-----+-----+-----+-------+
3 rows selected
*/

Scalar and aggregate functions:

import { SELECT, FROM, GROUP_BY, SUM, MAX, MIN, ADD, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'
import { input } from './data.js'

// scalar functions can be nested in aggregate functions
const query = () =>
SELECT('city',
    SUM(ADD('size', 'id'), AS('sum')),
    MAX('size', AS('max')),
    MIN('size', AS('min')),
    ADD('sum', 'max', 'min', SUM(ADD('size', 'id')), AS('total')),
FROM(input),
GROUP_BY('city'))

console.log(drawTable(query()))
/*
+--------+-----+-----+-----+-------+
| city   | sum | max | min | total |
+--------+-----+-----+-----+-------+
| Berlin |  35 |  10 |   4 |    84 |
| London |  31 |  10 |   4 |    76 |
| Paris  |  62 |  12 |   6 |   142 |
+--------+-----+-----+-----+-------+
3 rows selected
*/

Having

import { SELECT, FROM, GROUP_BY, HAVING, SUM, MAX, MIN, ADD, AS } from 'sql-select'
import { drawTable } from 'sql-select-utils'
import { input } from './data.js'

// having can be used to filter aggregate data
// row['sum'], row["sum"], row[`sum`] forms are also acceptable
const query = () =>
SELECT('city',
    SUM(ADD('size', 'id'), AS('sum')),
    MAX('size', AS('max')),
    MIN('size', AS('min')),
    ADD('sum', 'max', 'min', AS('total')),
FROM(input),
GROUP_BY('city'),
HAVING(row => row.sum > 32))

console.log(drawTable(query()))
/*
+--------+-----+-----+-----+-------+
| city   | sum | max | min | total |
+--------+-----+-----+-----+-------+
| Berlin |  35 |  10 |   4 |    49 |
| Paris  |  62 |  12 |   6 |    80 |
+--------+-----+-----+-----+-------+
2 rows selected
*/

Orderby

import { SELECT, FROM, ORDER_BY, ASC, DESC } from 'sql-select'
import { drawTable } from 'sql-select-utils'
import { input } from './data.js'

// ASC, DESC => for normal sorting, ASC is the default
// NOCASE_ASC, NOCASE_DESC => for case insensitive sorting
// ASC_LOC, DESC_LOC => sorting with current locale
const query = () =>
SELECT('city', 'size', 'id',
FROM(input),
ORDER_BY('city', ASC, 'size', DESC, 'id'))

console.log(drawTable(query()))
/*
+--------+------+----+
| city   | size | id |
+--------+------+----+
| Berlin |   10 |  9 |
| Berlin |    4 | 12 |
| Berlin | null | 10 |
| Berlin | null | 11 |
| London |   10 |  1 |
| London |   10 |  2 |
| London |    4 |  4 |
| London | null |  3 |
| Paris  |   12 |  5 |
| Paris  |   10 |  6 |
| Paris  |    8 |  7 |
| Paris  |    6 |  8 |
+--------+------+----+
12 rows selected
*/