sparrow-controllers
v29.0.1
Published
Collection of platform-agnostic modules for creating secure data models for cryptocurrency wallets
Downloads
21
Readme
sparrow-controllers
A collection of platform-agnostic modules for creating secure data models for cryptocurrency wallets.
Table of Contents
Usage
First, install the package.
yarn add sparrow-controllers
Then, compose stores to create a data model.
import {
ComposableController,
NetworkController,
TokenRatesController,
} from 'sparrow-controllers';
const datamodel = new ComposableController([
new NetworkController(),
new TokenRatesController(),
]);
datamodel.subscribe((state) => {
/* data model has changed */
});
Modules
sparrow-controllers
consists of a collection of controller modules that each expose uniform APIs for common operations like configuration, state management, and subscription.
AccountTrackerController
import AccountTrackerController from 'sparrow-controllers';
The AccountTrackerController tracks information associated with specific Ethereum accounts.
AddressBookController
import AddressBookController from 'sparrow-controllers';
The AddressBookController exposes functions for managing a list of recipient addresses and associated nicknames.
ComposableController
import ComposableController from 'sparrow-controllers';
The ComposableController can be used to compose multiple controllers together into a single controller.
CurrencyRateController
import CurrencyRateController from 'sparrow-controllers';
The CurrencyRateController passively polls for an UBQ-to-fiat exchange rate based on a chosen currency.
KeyringController
import KeyringController from 'sparrow-controllers';
The KeyringController is responsible for establishing and managing Ethereum address-based identities.
NetworkController
import NetworkController from 'sparrow-controllers';
The NetworkController is responsible for creating an underlying provider and for refreshing its configuration.
PhishingController
import PhishingController from 'sparrow-controllers';
The PhishingController passively polls for community-maintained lists of approved and unapproved website origins.
PreferencesController
import PreferencesController from 'sparrow-controllers';
The PreferencesController manages agnostic global settings and exposes convenience methods for updating them.
TokenRatesController
import TokenRatesController from 'sparrow-controllers';
The TokenRatesController passively polls on a set interval for token-to-fiat exchange rates.
TransactionController
import TransactionController from 'sparrow-controllers';
The TransactionController is responsible for submitting and managing transactions.
util
import util from 'sparrow-controllers';
The util module exposes a set of utility functions for common operations like gas estimation and generating crypto-buying URLs.
Concepts
Using controllers should be straightforward since each controller exposes the same minimal API. The concepts detailed in this section form the entirety of the core API: knowing these concepts will allow you to fully use sparrow-controllers
to build wallet data models.
Initialization
Each controller can be initialized with an optional initial configuration argument and an optional initial state argument:
const controller = new Controller(<initial_config>, <initial_state>)
Data passed into a controller as initial state will be merged with that controller's default state; likewise, options passed into a controller as initial configuration will be merged with that controller's default configuration.
Configuration
As mentioned in the initialization section, a controller can be configured during initialization by passing in a configuration object as its first argument:
const controller = new Controller(<initial_config>, <initial_state>)
A controller can also be configured (or reconfigured) after initialization by passing a configuration object to its configure
method:
const controller = new Controller();
controller.configure({ foo: 'bar', baz: 'qux' });
Regardless of how a controller is configured, whether it's during or after initialization, configuration options can always be accessed on a controller as instance variables for convenience:
const controller = new Controller();
controller.configure({ foo: 'bar', baz: 'qux' });
console.log(controller.foo, controller.baz); // "bar qux"
State management
The core purpose of every controller is to maintain an internal data object called "state". Modules are like data stores: their internal state data can be updated directly by modifying the data itself or indirectly by calling API methods that in turn modify the data.
A controller's state can be directly modified by calling its update
method and passing in a new data object. By default, this data object will be merged with the controller's existing internal state; however, if the data object should overwrite the controller's internal state, a second argument of true
can be passed to the update
method:
const controller = new Controller();
controller.update({ foo: 'bar' }); // merge with existing state
controller.update({ foo: 'bar' }, true); // overwrite existing state
A controller's state can be indirectly modified by calling any state-modifying API methods it may expose. For example, the AddressBookController exposes a set
method that accepts a new address to save and an associated nickname; calling this method will internally update its state.addressBook
array.
A controller's state can always be accessed by referencing the state
instance variable for convenience:
const controller = new Controller();
console.log(controller.state); // { ... }
Subscription
Since each controller maintains an internal state object, there should be a way to add listeners to be notified when state data changes. controllers expose two methods for subscription management, subscribe
and unsubscribe
.
Change handlers can be registered with a controller by passing a function to its subscribe
method. This function will be called anytime the controller's underlying state changes and will be passed the current state as its only function argument:
function onChange(state) {
/* state data changed */
}
const controller = new Controller();
controller.subscribe(onChange);
Change handlers can be removed from a controller by passing a function to its unsubscribe
method. Any function passed to unsubscribe
will be removed from the internal list of handlers and will no longer be called when state data changes:
function onChange(state) {
/* state data changed */
}
const controller = new Controller();
controller.subscribe(onChange);
// ...
controller.unsubscribe(onChange);
Composition
Because each controller maintains its own state and subscriptions, it would be tedious to initialize and subscribe to every available controller independently. To solve this issue, the ComposableController can be used to compose multiple controllers into a single controller.
The ComposableController is initialized by passing an array of controller instances:
import {
ComposableController,
NetworkController,
TokenRatesController,
} from 'sparrow-controllers';
const datamodel = new ComposableController([
new NetworkController(),
new TokenRatesController(),
]);
The resulting composed controller exposes the same APIs as every other controller for configuration, state management, and subscription:
datamodel.subscribe((state) => {
/* some child state has changed */
});
The internal state maintained by a ComposableController will be keyed by child controller class name. It's also possible to access the flatState
instance variable that is a convenience accessor for merged child state:
console.log(datamodel.state); // {NetworkController: {...}, TokenRatesController: {...}}
console.log(datamodel.flatState); // {infura: {...}, contractExchangeRates: [...]}
Contributing
Setup
- Install Node.js version 12
- If you are using nvm (recommended) running
nvm use
will automatically choose the right node version for you.
- If you are using nvm (recommended) running
- Install Yarn v1
- Run
yarn setup
to install dependencies and run any requried post-install scripts- Warning: Do not use the
yarn
/yarn install
command directly. Useyarn setup
instead. The normal install command will skip required post-install scripts, leaving your development environment in an invalid state.
- Warning: Do not use the
Testing and Linting
Run yarn test
to run the tests once. To run tests on file changes, run yarn test:watch
.
Run yarn lint
to run the linter, or run yarn lint:fix
to run the linter and fix any automatically fixable issues.
Linking During Development
Linking sparrow-controllers
into other projects involves a special NPM command to ensure that dependencies are not duplicated. This is because sparrow-controllers
ships modules that are transpiled but not bundled, and NPM does not deduplicate linked dependency trees.
First, yarn build:link
in this repository, then link sparrow-controllers
by running yarn link
in the consumer repository.
Release & Publishing
The project follows the same release process as the other libraries in the MetaMask organization. The GitHub Actions action-create-release-pr
and action-publish-release
are used to automate the release process; see those repositories for more information about how they work.
Choose a release version.
- The release version should be chosen according to SemVer. Analyze the changes to see whether they include any breaking changes, new features, or deprecations, then choose the appropriate SemVer version. See the SemVer specification for more information.
If this release is backporting changes onto a previous release, then ensure there is a major version branch for that version (e.g.
1.x
for av1
backport release).- The major version branch should be set to the most recent release with that major version. For example, when backporting a
v1.0.2
release, you'd want to ensure there was a1.x
branch that was set to thev1.0.1
tag.
- The major version branch should be set to the most recent release with that major version. For example, when backporting a
Trigger the
workflow_dispatch
event manually for theCreate Release Pull Request
action to create the release PR.- For a backport release, the base branch should be the major version branch that you ensured existed in step 2. For a normal release, the base branch should be the main branch for that repository (which should be the default value).
- This should trigger the
action-create-release-pr
workflow to create the release PR.
Update the changelog to move each change entry into the appropriate change category (See here for the full list of change categories, and the correct ordering), and edit them to be more easily understood by users of the package.
- Generally any changes that don't affect consumers of the package (e.g. lockfile changes or development environment changes) are omitted. Exceptions may be made for changes that might be of interest despite not having an effect upon the published package (e.g. major test improvements, security improvements, improved documentation, etc.).
- Try to explain each change in terms that users of the package would understand (e.g. avoid referencing internal variables/concepts).
- Consolidate related changes into one change entry if it makes it easier to explain.
- Run
yarn auto-changelog validate --rc
to check that the changelog is correctly formatted.
Review and QA the release.
- If changes are made to the base branch, the release branch will need to be updated with these changes and review/QA will need to restart again. As such, it's probably best to avoid merging other PRs into the base branch while review is underway.
Squash & Merge the release.
- This should trigger the
action-publish-release
workflow to tag the final release commit and publish the release on GitHub.
- This should trigger the
Publish the release on npm.
- Wait for the
publish-release
GitHub Action workflow to finish. This should trigger a second job (publish-npm
), which will wait for a run approval by thenpm publishers
team. - Approve the
publish-npm
job (or ask somebody on the npm publishers team to approve it for you). - Once the
publish-npm
job has finished, check npm to verify that it has been published.
- Wait for the