npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

smolai

v0.0.10

Published

Use SmolAI's API from an edge runtime, using standard Web APIs only

Downloads

19

Readme

SmolAI

this is an alpha package in active development. Don't rely on it but feel free to try it out and reach out to swyx if any questions.

import { SmolLogger } from '@smol-ai/logger';
import { z } from 'zod';
import { zodToJsonSchema } from "zod-to-json-schema"
import {
  Configuration,
  OpenAIApi,
  SmolAI
} from 'smolai'; // just a nice DX overlay on top of OpenAI's API

const logger = new SmolLogger()
const tagSchema = z.object({
    tag: z.string({ description: "A short Wikipedia-style news story tag describing the topic of the conversation, using acronyms and phrasing familiar for a developer and investor audience. e.g. Docker, CLIs, Compute, Audio, AI, 3D, Security, Gaming." }),
    confidence: z.number({ description: "Confidence level for the tag, a value between 0 to 1." }).min(0).max(1)
})

const printSchema = zodToJsonSchema(z.object({
  title: z.string({ description: "Verbatim title of the story" }),
  tags: z.array(tagSchema).min(3).max(6),
}));

const openai = new OpenAIApi(new Configuration({ apiKey: process.env.OPENAI_API_KEY }));
const smolai = new SmolAI(openai, `You are a bot that suggests appropriate Wikipedia-style news story tags given a Hacker News blog post title and comments, together with the degree of confidence in the tag. Suggested tags should be short. One word, as far as possible. e.g. Docker, Audio, AI, 3D, Security. The user will give you a title, respond with the tags you think are appropriate.`);

const print = ({ title, tags }) => title + tags // dont really care about the impl of print
smolai.addFunction(print, printSchema); // schema is validated coming in and going out
smolai.model = 'gpt-4-0613'

const response = await smolai.chat({
    messages: [
      'The post title: Testing the memory safe Rust implementation of Sudo/Su',
      'The HN comments: Is sudo known to be memory _un_safe? Because otherwise, calling this one "the memory safe [Rust] implementation of Sudo" is a bit weird.'
    ],
  })
const args = JSON.parse(response.choices[0].message.function_call.arguments);

logger.log('final result', args)

OpenAI Edge

A TypeScript module for querying OpenAI's API using fetch (a standard Web API) instead of axios. This is a drop-in replacement for the official openai module (which has axios as a dependency) - except you need to supply fetch in Node v17 and below (fetch landed in Node 18).

As well as reducing the bundle size, removing the dependency means we can query OpenAI from edge environments. Edge functions such as Next.js Edge API Routes are very fast and, unlike lambda functions, allow streaming data to the client.

The latest version of this module has feature parity with the official v3.3.0, and also supports the chat completion functions parameter, which isn't yet included in the official module.

Installation

npm install smolai
# or yarn add smolai

Responses

Every method returns a promise resolving to the standard fetch response i.e. Promise<Response>. Since fetch doesn't have built-in support for types in its response data, smolai includes an export ResponseTypes which you can use to assert the correct type on the JSON response:

import { Configuration, OpenAIApi, ResponseTypes } from "smolai"

const configuration = new Configuration({
  apiKey: "YOUR-API-KEY",
})
const openai = new OpenAIApi(configuration)

const response = await openai.createImage({
  prompt: "A cute baby sea otter",
  size: "512x512",
  response_format: "url",
})

const data = (await response.json()) as ResponseTypes["createImage"]

const url = data.data?.[0]?.url

console.log({ url })

Without global fetch

This module has zero dependencies and it expects fetch to be in the global namespace (as it is in web, edge and modern Node environments). If you're running in an environment without a global fetch defined e.g. an older version of Node.js, please pass fetch when creating your instance:

import fetch from "node-fetch"

const openai = new OpenAIApi(configuration, undefined, fetch)

Available methods

  • cancelFineTune
  • createAnswer
  • createChatCompletion (including support for functions)
  • createClassification
  • createCompletion
  • createEdit
  • createEmbedding
  • createFile
  • createFineTune
  • createImage
  • createImageEdit
  • createImageVariation
  • createModeration
  • createSearch
  • createTranscription
  • createTranslation
  • deleteFile
  • deleteModel
  • downloadFile
  • listEngines
  • listFiles
  • listFineTuneEvents
  • listFineTunes
  • listModels
  • retrieveEngine
  • retrieveFile
  • retrieveFineTune
  • retrieveModel

Edge route handler examples

Here are some sample Next.js Edge API Routes using smolai.

1. Streaming chat with gpt-3.5-turbo

Note that when using the stream: true option, OpenAI responds with server-sent events. Here's an example react hook to consume SSEs and here's a full NextJS example.

import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi } from "smolai"

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)

const handler = async (req: NextRequest) => {
  const { searchParams } = new URL(req.url)

  try {
    const completion = await openai.createChatCompletion({
      model: "gpt-3.5-turbo",
      messages: [
        { role: "system", content: "You are a helpful assistant." },
        { role: "user", content: "Who won the world series in 2020?" },
        {
          role: "assistant",
          content: "The Los Angeles Dodgers won the World Series in 2020.",
        },
        { role: "user", content: "Where was it played?" },
      ],
      max_tokens: 7,
      temperature: 0,
      stream: true,
    })

    return new Response(completion.body, {
      headers: {
        "Access-Control-Allow-Origin": "*",
        "Content-Type": "text/event-stream;charset=utf-8",
        "Cache-Control": "no-cache, no-transform",
        "X-Accel-Buffering": "no",
      },
    })
  } catch (error: any) {
    console.error(error)

    return new Response(JSON.stringify(error), {
      status: 400,
      headers: {
        "content-type": "application/json",
      },
    })
  }
}

export const config = {
  runtime: "edge",
}

export default handler

2. Text completion with Davinci

import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi, ResponseTypes } from "smolai"

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)

const handler = async (req: NextRequest) => {
  const { searchParams } = new URL(req.url)

  try {
    const completion = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: searchParams.get("prompt") ?? "Say this is a test",
      max_tokens: 7,
      temperature: 0,
      stream: false,
    })

    const data = (await completion.json()) as ResponseTypes["createCompletion"]

    return new Response(JSON.stringify(data.choices), {
      status: 200,
      headers: {
        "content-type": "application/json",
      },
    })
  } catch (error: any) {
    console.error(error)

    return new Response(JSON.stringify(error), {
      status: 400,
      headers: {
        "content-type": "application/json",
      },
    })
  }
}

export const config = {
  runtime: "edge",
}

export default handler

3. Creating an Image with DALL·E

import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi, ResponseTypes } from "smolai"

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)

const handler = async (req: NextRequest) => {
  const { searchParams } = new URL(req.url)

  try {
    const image = await openai.createImage({
      prompt: searchParams.get("prompt") ?? "A cute baby sea otter",
      n: 1,
      size: "512x512",
      response_format: "url",
    })

    const data = (await image.json()) as ResponseTypes["createImage"]

    const url = data.data?.[0]?.url

    return new Response(JSON.stringify({ url }), {
      status: 200,
      headers: {
        "content-type": "application/json",
      },
    })
  } catch (error: any) {
    console.error(error)

    return new Response(JSON.stringify(error), {
      status: 400,
      headers: {
        "content-type": "application/json",
      },
    })
  }
}

export const config = {
  runtime: "edge",
}

export default handler

acknowledgements

This is a fork of https://github.com/dan-kwiat/openai-edge!