npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

slip39

v0.1.9

Published

The javascript implementation of the SLIP39 for Shamir's Secret-Sharing for Mnemonic Codes.

Downloads

390

Readme

SLIP39

npm

The javascript implementation of the SLIP39 for Shamir's Secret-Sharing for Mnemonic Codes.

The code based on my Dart implementation of SLIP-0039.

DISCLAIMER

This project is still in early development phase. Use it at your own risk.

Description

This SLIP39 implementation uses a 3 level height (l=3) of a 16 degree (d=16) tree (T), which is represented as an array of the level two nodes (groups, G).

The degree (d) and the level (l) of the tree are 16 and 3 respectively, which means that max d^(l-1), i.e. 16^2, leaf nodes (M) can be in a complete tree (or forest).

The first level (l=1) node of the tree is the root (R), the level 2 ones are the SSS groups (Gs or group nodes) e.g. [G0, ..., Gd].

The last, the third, level nodes are the only leaves (M, group members) which contain the generated mnemonics.

Every node has two values:

  • the N and
  • M i.e. n(N,M).

Which means, that N (threshold) number of M children are required to reconstruct the node's secret.

Format

The tree's human friendly array representation only uses the group (l=2) nodes as arrays. For example: [[1,1], [1,1], [3,5], [2,6]] The group's first parameter is the N (group threshold) while the second is the M, the number of members in the group. See, and example in Using.

Installing

npm install slip39

Using

See example/main.js

const slip39 = require("../src/slip39.js");
const assert = require("assert");
// threshold (N) number of group shares required to reconstruct the master secret.
const threshold = 2;
const masterSecret = "ABCDEFGHIJKLMNOP".slip39EncodeHex();
const passphrase = "TREZOR";

/**
 * 4 groups shares.
 * = two for Alice
 * = one for friends and
 * = one for family members
 * Two of these group shares are required to reconstruct the master secret.
 */
const groups = [
  // Alice group shares. 1 is enough to reconstruct a group share,
  // therefore she needs at least two group shares to be reconstructed,
  [1, 1],
  [1, 1],
  // 3 of 5 Friends' shares are required to reconstruct this group share
  [3, 5],
  // 2 of 6 Family's shares are required to reconstruct this group share
  [2, 6],
];

const slip = slip39.fromArray(masterSecret, {
  passphrase: passphrase,
  threshold: threshold,
  groups: groups,
});

// One of Alice's share
const aliceShare = slip.fromPath("r/0").mnemonics;

// and any two of family's shares.
const familyShares = slip
  .fromPath("r/3/1")
  .mnemonics.concat(slip.fromPath("r/3/3").mnemonics);

const allShares = aliceShare.concat(familyShares);

console.log("Shares used for restoring the master secret:");
allShares.forEach((s) => console.log(s));

const recoveredSecret = slip39.recoverSecret(allShares, passphrase);
console.log("Master secret: " + masterSecret.slip39DecodeHex());
console.log("Recovered one: " + recoveredSecret.slip39DecodeHex());
assert(masterSecret.slip39DecodeHex() === recoveredSecret.slip39DecodeHex());

Testing

 $ npm install
 $ npm test

  Basic Tests
    Test threshold 1 with 5 of 7 shares of a group combinations
      ✓ Test combination 0 1 2 3 4.
      ✓ Test combination 0 1 2 3 5.
      ✓ Test combination 0 1 2 3 6.
      ✓ Test combination 0 1 2 4 5.
      ✓ Test combination 0 1 2 4 6.
      ✓ Test combination 0 1 2 5 6.
      ✓ Test combination 0 1 3 4 5.
      ✓ Test combination 0 1 3 4 6.
      ✓ Test combination 0 1 3 5 6.
      ✓ Test combination 0 1 4 5 6.
      ✓ Test combination 0 2 3 4 5.
      ✓ Test combination 0 2 3 4 6.
      ✓ Test combination 0 2 3 5 6.
      ✓ Test combination 0 2 4 5 6.
      ✓ Test combination 0 3 4 5 6.
      ✓ Test combination 1 2 3 4 5.
      ✓ Test combination 1 2 3 4 6.
      ✓ Test combination 1 2 3 5 6.
      ✓ Test combination 1 2 4 5 6.
      ✓ Test combination 1 3 4 5 6.
      ✓ Test combination 2 3 4 5 6.
    Test passhrase
      ✓ should return valid mastersecret when user submits valid passphrse
      ✓ should NOT return valid mastersecret when user submits invalid passphrse
      ✓ should return valid mastersecret when user does not submit passphrse
    Test iteration exponent
      ✓ should return valid mastersecret when user apply valid iteration exponent (44ms)
      ✓ should throw an Error when user submits invalid iteration exponent

  Group Shares Tests
    Test all valid combinations of mnemonics
      ✓ should return the valid mastersecret when valid mnemonics used for recovery
    Original test vectors Tests
      ✓ 1. Valid mnemonic without sharing (128 bits)
      ✓ 2. Mnemonic with invalid checksum (128 bits)
      ✓ 3. Mnemonic with invalid padding (128 bits)
      ✓ 4. Basic sharing 2-of-3 (128 bits)
      ✓ 5. Basic sharing 2-of-3 (128 bits)
      ✓ 6. Mnemonics with different identifiers (128 bits)
      ✓ 7. Mnemonics with different iteration exponents (128 bits)
      ✓ 8. Mnemonics with mismatching group thresholds (128 bits)
      ✓ 9. Mnemonics with mismatching group counts (128 bits)
      ✓ 10. Mnemonics with greater group threshold than group counts (128 bits)
      ✓ 11. Mnemonics with duplicate member indices (128 bits)
      ✓ 12. Mnemonics with mismatching member thresholds (128 bits)
      ✓ 13. Mnemonics giving an invalid digest (128 bits)
      ✓ 14. Insufficient number of groups (128 bits, case 1)
      ✓ 15. Insufficient number of groups (128 bits, case 2)
      ✓ 16. Threshold number of groups, but insufficient number of members in one group (128 bits)
      ✓ 17. Threshold number of groups and members in each group (128 bits, case 1)
      ✓ 18. Threshold number of groups and members in each group (128 bits, case 2)
      ✓ 19. Threshold number of groups and members in each group (128 bits, case 3)
      ✓ 20. Valid mnemonic without sharing (256 bits)
      ✓ 21. Mnemonic with invalid checksum (256 bits)
      ✓ 22. Mnemonic with invalid padding (256 bits)
      ✓ 23. Basic sharing 2-of-3 (256 bits)
      ✓ 24. Basic sharing 2-of-3 (256 bits)
      ✓ 25. Mnemonics with different identifiers (256 bits)
      ✓ 26. Mnemonics with different iteration exponents (256 bits)
      ✓ 27. Mnemonics with mismatching group thresholds (256 bits)
      ✓ 28. Mnemonics with mismatching group counts (256 bits)
      ✓ 29. Mnemonics with greater group threshold than group counts (256 bits)
      ✓ 30. Mnemonics with duplicate member indices (256 bits)
      ✓ 31. Mnemonics with mismatching member thresholds (256 bits)
      ✓ 32. Mnemonics giving an invalid digest (256 bits)
      ✓ 33. Insufficient number of groups (256 bits, case 1)
      ✓ 34. Insufficient number of groups (256 bits, case 2)
      ✓ 35. Threshold number of groups, but insufficient number of members in one group (256 bits)
      ✓ 36. Threshold number of groups and members in each group (256 bits, case 1)
      ✓ 37. Threshold number of groups and members in each group (256 bits, case 2)
      ✓ 38. Threshold number of groups and members in each group (256 bits, case 3)
      ✓ 39. Mnemonic with insufficient length
      ✓ 40. Mnemonic with invalid master secret length
    Invalid Shares
      ✓ Short master secret
      ✓ Odd length master secret
      ✓ Group threshold exceeds number of groups
      ✓ Invalid group threshold.
      ✓ Member threshold exceeds number of members
      ✓ Invalid member threshold
      ✓ Group with multiple members and threshold 1


  74 passing (477ms)

TODOS

  • [x] Add unit tests.
  • [x] Test with the reference code's test vectors.
  • [ ] Refactor the helpers to different helper classes e.g. CryptoHelper(), ShamirHelper() etc.
  • [ ] Add JSON representation, see JSON representation below.
  • [ ] Refactor to much simpler code.

JSON Representation

{
  "name": "Slip39",
  "threshold": 2,
  "shares": [
    {
      "name": "My Primary",
      "threshold": 1,
      "shares": ["Primary"]
    },
    {
      "name": "My Secondary",
      "threshold": 1,
      "shares": ["Secondary"]
    },
    {
      "name": "Friends",
      "threshold": 3,
      "shares": ["Alice", "Bob", "Charlie", "David", "Erin"]
    },
    {
      "name": "Family",
      "threshold": 2,
      "shares": ["Adam", "Brenda", "Carol", "Dan", "Edward", "Frank"]
    }
  ]
}

LICENSE

CopyRight (c) 2019 Pal Dorogi "iLap" [email protected]

MIT License