simple-bst
v1.4.1
Published
A simple binary search tree
Downloads
2
Maintainers
Readme
:deciduous_tree: simple-bst
An implementation of a Binary Search Tree (BST)
Table of contents
Installation
Install simple-bst
using npm.
npm install simple-bst
Or install using yarn.
yarn add simple-bst
Usage
import { BST, Node } from 'simple-bst';
// also works
// import BST from 'simple-bst';
const tree = new BST();
// Adding and removing nodes
tree.add(5).add(15).add(2).add(new Node(20)).remove(15);
// Shortex syntax
tree.add(8, 72, 95).remove(72, 95);
console.log(tree.size); // 4
// Checking if a node is present
if (tree.has(2)) {
console.log('The number 2 is present in the tree');
} else {
console.log('The number 2 is not present in the tree');
}
// Getting the max value
const max = tree.max(); // 20
// Getting the min value
const min = tree.min(); // 2
API
add
Adds a node in the tree.
tree.add(5); // First node becomes the root
tree.add(10);
// Shorter syntax
tree.add(8, 11);
console.log(tree.size); // 4
remove
Removes a node from the tree.
tree.add(5, 10, 20, 2, 4, 18);
tree.remove(10, 18);
console.log(tree.size); // 4
find
Searches for a given value in the tree and returns the node.
tree.add(5, 10);
const node = tree.find(10);
console.log(node.data); // 10
has
Indicates whether a value exists. Optionally takes a root node from which to check the value.
tree.add(5, 10, 15, 9, 7);
console.log(tree.has(5)); // true
console.log(tree.has(14)); // false
const root = tree.find(15);
console.log(tree.has(5, root)); // false
min
Finds the minimum value in the tree. Optionally takes a root node from which to find the value.
tree.add(5, 2, 10, 15, 9, 7);
console.log(tree.min()); // 2
const root = tree.find(10);
console.log(tree.min(root)); // 7
max
Finds the maximum value in the tree. Optionally takes a root node from which to find the value.
tree.add(5, 2, 3, 1, 10, 15, 9, 7);
console.log(tree.max()); // 15
const root = tree.find(3);
console.log(tree.max(root)); // 2
height
Gets the height of the tree.
tree.add(8, 3, 1, 6, 4, 7, 10, 14, 13);
console.log(tree.height()); // 3
// you can also use depth, which is an alias for the height function
console.log(tree.depth()); // 3
Traversing the tree
All traversal functions are generator functions, which return a Generator.
traverse
Traverses the tree using the specified order.
tree.add(4).add(2).add(1).add(3).add(6).add(5).add(7);
for (const node of tree.traverse('inorder')) {
console.log(node.data);
}
inorder
Traverses the tree from the left subtree to the root, then to the right subtree.
tree.add(4).add(2).add(1).add(3).add(6).add(5).add(7);
const inorder = Array.from(tree.inorder());
// [ 1, 2, 3, 4, 5, 6, 7 ]
console.log(inorder.map(node => node.data));
preorder
Traverses the tree from the root
to the left subtree, then to the right subtree.
tree.add(4).add(2).add(1).add(3).add(6).add(5).add(7);
const preorder = Array.from(tree.preorder());
// [ 4, 2, 1, 3, 6, 5, 7 ]
console.log(preorder.map(node => node.data));
postorder
Traverses the tree from the left subtree to the right subtree, then to the root.
tree.add(4).add(2).add(1).add(3).add(6).add(5).add(7);
const postorder = Array.from(tree.postorder());
// [ 1, 3, 2, 5, 7, 6, 4 ]
console.log(postorder.map(node => node.data));
Utility functions
isLeaf
Indicates whether a node has no sub-children (i.e is a leaf).
tree.add(8, 3, 1, 10, 15, 14);
console.log(tree.isLeaf(8)); // false
console.log(tree.isLeaf(3)); // false
console.log(tree.isLeaf(10)); // false
console.log(tree.isLeaf(1)); // true
console.log(tree.isLeaf(14); // true
isBalanced
Indicates whether the tree is balanced.
const balancedTree = new BST([ 3, 1, 4, 2 ]);
const unbalancedTree = new BST([ 1, 2, 3, 4, 5, 6 ]);
console.log(balancedTree.isBalanced()); // true
console.log(unbalancedTree.isBalanced()); // false
Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.