npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

set-distance

v1.0.2

Published

Finds measure of similarity/distance between two input sets.

Downloads

58

Readme

set-distance

Finds similarity/distance between two input sets.
Algorithms implemented:
1). Sorensen-Dice Coefficient.
2). Jaccard Index.
3). Ochiai Coefficient.
4). Overlap Coefficient.
5). Levenshtein/Edit Distance.
6). Euclidean Distance.

Installation

npm install set-distance --save
bower install set-distance --save

Usage

Javascript

var Distance = require('set-distance');
//SorensenDice Coefficient
var sc = new Distance.SorensenDice(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(sc);
//Output: 0.7142857142857143

//Jaccard Index
var jc = new Distance.Jaccard(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(jc);
//Output: 0.5555555555555556

//Ochiai Coefficient
var oc = new Distance.Ochiai(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(oc);
//Output: 0.7216878364870323

//Overlap Coefficient
var ov = new Distance.Overlap(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(ov);
//Output: 0.8333333333333334

//Levenshtein/Edit Distance
var ld = new Distance.Levenshtein(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(ld);
//Output: 3

//Euclidean Distance
var ed = new Distance.Euclidean([50, 60], [20, 25]).getDistance(); // Here cartesian co-ordinates given in both arrays. Eg.: cartestian co-ordinates p1=50, p2=60 given in first list. And cartesian co-ordinates q1=20, q2=25 given in second list. Thus array1 in this case holds caretsian co-ordinates of "p" and array2 holds caretsian co-ordinates of "q".
console.log(ed);
//Output: 46.0977

TypeScript

import * as Distance from 'set-distance';
//SorensenDice Coefficient
var sc = new Distance.SorensenDice(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(sc);
//Output: 0.7142857142857143

//Jaccard Index
var jc = new Distance.Jaccard(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(jc);
//Output: 0.5555555555555556

//Ochiai Coefficient
var oc = new Distance.Ochiai(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(oc);
//Output: 0.7216878364870323

//Overlap Coefficient
var ov = new Distance.Overlap(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(ov);
//Output: 0.8333333333333334

//Levenshtein/Edit Distance
var ld = new Distance.Levenshtein(['S', 'A', 'T', 'U', 'R', 'D', 'A', 'Y'], ['S', 'U', 'N', 'D', 'A', 'Y']).getCoefficient();
console.log(ld);
//Output: 3

//Euclidean Distance
var ed = new Distance.Euclidean([50, 60], [20, 25]).getDistance(); // Here cartesian co-ordinates given in both arrays. Eg.: cartestian co-ordinates p1=50, p2=60 given in first list. And cartesian co-ordinates q1=20, q2=25 given in second list. Thus array1 in this case holds caretsian co-ordinates of "p" and array2 holds caretsian co-ordinates of "q".
console.log(ed);
//Output: 46.0977