npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

serverless-aws-batch-custom-image

v1.5.1

Published

Serverless Framework Plugin for interacting with AWS Batch

Downloads

55

Readme

Serverless Batch Custom Image

serverless

This is WORKING fork from https://github.com/justinram11/serverless-aws-batch with additional features (custom image for docker)

A Serverless v1.x plugin that makes creating and running AWS Batch tasks as easy as creating a Serverless Lambda Function.

Tested with:

  • Python 3.7

Disclaimer: This project has not yet been well tested and is not yet recommended for a production system

Install

First make sure than you have Docker installed and running

Then add the plugin to your serverless project:

npm install serverless-aws-batch-custom-image --save-dev

Modify the serverless.yml file to include the plugin:

plugins:
  - serverless-aws-batch-custom-image

Next we need to define our AWS Batch Compute Resource

provider:
  name: aws
  region: us-east-2
  runtime: python3.7
  batch:
    Type: [EC2 | SPOT] # Required
    BidPercentage: <Integer> # Optional. Defaults to 100 if Type = SPOT (you always pay lowest market price)
    SecurityGroupIds: # Required
      - <Security Group ID>
    Subnets: # Required
      - <VPC Subnet ID>
    InstanceTypes: # Optional
      - <Batch-Supported-Instance-Type> # Default c5.large (cheapest)
    MinvCpus: <Integer> # Optional. Default 0
    MaxvCpus: <Integer> # Optional. Default 2
    Tags: # Optional
      <Key>: <Value> # Default "Name": "AWS Batch Instance - <service>"

And then define our AWS Batch Job Definition on the function definition

functions:
  hello:
    handler: <handler definition>
    batch:
      ContainerProperties:
        Memory: <Integer> # Optional. Default 2048
        Vcpus: <Integer> # Optional. Default 1
        Command: <Command to run in docker> # Optional. Defaults to "<handler> Ref::event"
        JobRoleArn: <ARN> # Optional. Defaults to package.iamRoleStatements
        Environment:
          TEST_ENV_1: Test Value 1
      RetryStrategy:
        Attempts: <Integer> # Optional. Defaults to 1
      Timeout:
        AttemptDurationSeconds: <Integer> # Optional. Defaults to 300

And now you should be able to write your batch function like you would any other serverless lambda function:

import logging

# Setup our logger to work both locally and with both AWS CloudWatch
if len(logging.getLogger().handlers) > 0:
    logging.getLogger().setLevel(logging.INFO)
else:
    logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()


def hello(event, context):
    logger.info(f"Hello World: {event}")
functions:
  hello:
    handler: handler.hello
    events:
      - http:
          path: hello
          method: get
    batch:
      ContainerProperties:
        Memory: 2048
        Vcpus: 1
      RetryStrategy:
        Attempts: 1
      Timeout:
        AttemptDurationSeconds: 3600

Implementation

What happens behind the scenes is that the Serverless Framework's ".zip" artifact gets installed into a lambci/lambda:<env> docker image and uploaded to ECR.

  • Note: Currently using copy of the docker images (https://cloud.docker.com/u/justinram11/repository/list) that unsets the ACCESS_KEY_ID and SECRET_ACCESS_KEY environmental variables so that we can use the role attached to the EC2 instance.

A "schedule" lambda function is then created with the same name as the regular Serverless Framework's lambda function that can be called in to pass the input event to the AWS Batch Job. The "schedule" lambda function can also be subscribed to events the same way a regular Serverless Lambda Function is.

serverless-batch

Example

After deploying with sls deploy, navigate to the AWS Lambda Console and create a new Test Event with any event value and click the "Test" button.

The lambda function will automatically create a new AWS Batch Job which should be visible on the AWS Batch Console

Logs are visible in CloudWatch under the /aws/batch/job Log Group

serverless.yml

service: serverless-demo

provider:
  name: aws
  region: us-east-2
  runtime: python3.7
  # Creates a SPOT Compute Environment using the VPC defined in our Resources
  batch:
    Type: SPOT
    BidPercentage: 100
    SecurityGroupIds:
      - Ref: AllowAllSecurityGroup
    Subnets:
      - Ref: PublicSubnet
    MinvCpus: 0
    MaxvCpus: 2
  # Allows the Batch Job (code written in handler.py) to list all of our S3 Buckets.
  iamRoleStatements:
    - Effect: "Allow"
      Action:
        - "s3:ListAllMyBuckets"
      Resource: "*"

plugins:
  - serverless-python-requirements
  - serverless-aws-batch

package:
  include:
    - handler.py
  exclude:
    - .serverless/**
    - node_modules/**

functions:
  hello:
    handler: handler.hello
    events:
      - http:
         path: hello
         method: get
    # Creates a Batch Job with 2GB of memory and 1 vCPU.
    batch:
      ContainerProperties:
        Memory: 2048
        Vcpus: 1
      RetryStrategy:
        Attempts: 1
      Timeout:
        AttemptDurationSeconds: 3600


# WARNING: Should not be used in production (allows all traffic)
# VPC: "Batch VPC"
#  - CIDR: 10.224.0.0/16
#  - Subnet: "Batch <region>a Public Subnet"
#    - CIDR: 10.224.0.0/20
#    - Allows all incoming and outgoing traffic
#  - Security Group: "Batch Allow All"
#    - Allows all incoming and outgoing traffic
resources:
  Resources:

    VPC:
      Type: AWS::EC2::VPC
      Properties:
        CidrBlock: 10.224.0.0/16
        EnableDnsSupport: true
        EnableDnsHostnames: true
        Tags:
          - Key: Name
            Value: Batch VPC

    InternetGateway:
      Type: AWS::EC2::InternetGateway
      Properties:
        Tags:
          - Key: Name
            Value: Batch Internet Gateway

    InternetGatewayAttachment:
      Type: AWS::EC2::VPCGatewayAttachment
      Properties:
        InternetGatewayId: !Ref InternetGateway
        VpcId: !Ref VPC

    PublicSubnet:
      Type: AWS::EC2::Subnet
      Properties:
        VpcId: !Ref VPC
        AvailabilityZone: ${self:provider.region}a
        CidrBlock: 10.224.0.0/20
        MapPublicIpOnLaunch: true
        Tags:
          - Key: Name
            Value: Batch ${self:provider.region}a Public Subnet

    PublicRouteTable:
      Type: AWS::EC2::RouteTable
      Properties:
        VpcId: !Ref VPC
        Tags:
          - Key: Name
            Value: Batch Public Routes

    DefaultPublicRoute:
      Type: AWS::EC2::Route
      DependsOn: InternetGatewayAttachment
      Properties:
        RouteTableId: !Ref PublicRouteTable
        DestinationCidrBlock: 0.0.0.0/0
        GatewayId: !Ref InternetGateway

    PublicSubnetRouteTableAssociation:
      Type: AWS::EC2::SubnetRouteTableAssociation
      Properties:
        RouteTableId: !Ref PublicRouteTable
        SubnetId: !Ref PublicSubnet

    PublicNetworkAcl:
      Type: AWS::EC2::NetworkAcl
      DependsOn: VPC
      Properties:
        VpcId: !Ref VPC
        Tags:
          - Key: Name
            Value: AWS Batch Public ACL

    InboundPublicNetworkAclAllowAll:
      Type: AWS::EC2::NetworkAclEntry
      Properties:
        NetworkAclId: !Ref PublicNetworkAcl
        RuleNumber: 100
        Protocol: -1
        RuleAction: allow
        Egress: false
        CidrBlock: 0.0.0.0/0
        PortRange:
          From: 0
          To: 65535

    OutboundPublicNetworkAclAllowAll:
      Type: AWS::EC2::NetworkAclEntry
      Properties:
        NetworkAclId: !Ref PublicNetworkAcl
        RuleNumber: 100
        Protocol: -1
        RuleAction: allow
        Egress: true
        CidrBlock: 0.0.0.0/0
        PortRange:
          From: 0
          To: 65535

    PublicSubnetNetworkAclAssociation1:
      Type: AWS::EC2::SubnetNetworkAclAssociation
      Properties:
        SubnetId: !Ref PublicSubnet
        NetworkAclId: !Ref PublicNetworkAcl

    AllowAllSecurityGroup:
      Type: AWS::EC2::SecurityGroup
      Properties:
        GroupName: Batch Allow All
        GroupDescription: "Security group for batch instances that allows all traffic"
        VpcId: !Ref VPC
        SecurityGroupIngress:
          - IpProtocol: "-1"
            CidrIp: 0.0.0.0/0
        SecurityGroupEgress:
          - IpProtocol: "-1"
            CidrIp: 0.0.0.0/0

Python

handler.py

import json
import time
import logging
import boto3

# Setup our logger to work with both AWS CloudWatch and locally
if len(logging.getLogger().handlers) > 0:
    logging.getLogger().setLevel(logging.INFO)
else:
    logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()

# Setup our boto3 clients
s3 = boto3.client('s3')


def hello(event, context):
    logger.info(f"Hello world: {event}")

    response = s3.list_buckets()
    logger.info(f"S3 Buckets: {response}")

Node.JS

handler.js

'use strict';
const process = require("process");
const AWS = require("aws-sdk");
const s3 = new AWS.S3();

module.exports.hello = (event, context, callback) => {

  console.log(`Received event: ${JSON.stringify(event)}`);

  console.log(process.env.AWS_ACCESS_KEY_ID);
  console.log(process.env.AWS_SECRET_ACCESS_KEY);

  s3.listBuckets({}, function(err, data) {
    console.log(`List buckets data: ${data} err: ${err}`);
  });
};