npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

segmentit

v2.0.3

Published

Chinese word segmentation 中文分词模块 with browser && electron support

Downloads

9,407

Readme

中文分词模块

本模块基于 node-segment 魔改,增加了 electron、浏览器支持,并准备针对 electron 多线程运行环境进行优化。

之所以要花时间魔改,是因为 segmentnodejieba 虽然在 node 环境下很好用,但根本无法在浏览器和 electron 环境下运行。我把代码重构为 ES2015,并用 babel 插件内联了字典文件,全部载入的话大小是 3.8M,但如果有些字典你并不需要,字典和模块是支持 tree shaking 的(请使用 ESM 模块)。

Usage

import { Segment, useDefault } from 'segmentit';

const segmentit = useDefault(new Segment());
const result = segmentit.doSegment('工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作。');
console.log(result);

对于 runkit 环境:

const { Segment, useDefault } = require('segmentit');
const segmentit = useDefault(new Segment());
const result = segmentit.doSegment('工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作。');
console.log(result);

在 Runkit 上免费试用

获取词类标注

结巴分词风格的词类标注:

// import Segment, { useDefault, cnPOSTag, enPOSTag } from 'segmentit';
const  = require('segmentit').default;
const { Segment, useDefault, cnPOSTag, enPOSTag } = require('segmentit');

const segmentit = useDefault(new Segment());

console.log(segmentit.doSegment('一人得道,鸡犬升天').map(i => `${i.w} <${cnPOSTag(i.p)}> <${enPOSTag(i.p)}>`))
// ↑ ["一人得道 <习语,数词 数语素> <l,m>", ", <标点符号> <w>", "鸡犬升天 <成语> <i>"]

只使用部分词典或使用自定义词典

useDefault 的具体实现是这样的:

// useDefault
import { Segment, modules, dicts, synonyms, stopwords } from 'segmentit';

const segmentit = new Segment();
segmentit.use(modules);
segmentit.loadDict(dicts);
segmentit.loadSynonymDict(synonyms);
segmentit.loadStopwordDict(stopwords);

因此你实际上可以 import 所需的那部分字典和模块,然后一个个如下载入。没有 import 的那些字典和模块应该会被 webpack 的 tree shaking 去掉。你也可以这样载入自己定义的字典文件,只需要主要 loadDict 的函数签名是 (dicts: string | string[]): Segment

// load custom module and dicts
import {
  Segment,
  ChsNameTokenizer,
  DictOptimizer,
  EmailOptimizer,
  PunctuationTokenizer,
  URLTokenizer,
  ChsNameOptimizer,
  DatetimeOptimizer,
  DictTokenizer,
  ForeignTokenizer,
  SingleTokenizer,
  WildcardTokenizer,
  pangu,
  panguExtend1,
  panguExtend2,
  names,
  wildcard,
  synonym,
  stopword,
} from 'segmentit';

const segmentit = new Segment();

// load them one by one, or by array
segmentit.use(ChsNameTokenizer);
segmentit.loadDict(pangu);
segmentit.loadDict([panguExtend1, panguExtend2]);
segmentit.loadSynonymDict(synonym);
segmentit.loadStopwordDict(stopword);

盘古的词典比较复古了,像「软萌萝莉」这种词都是没有的,请有能力的朋友 PR 一下自己的词库。

创造自己的分词中间件(Tokenizer)和结果优化器(Optimizer)

Tokenizer

Tokenizer 是分词时要经过的一个个中间件,类似于 Redux 的 MiddleWare,它的 split 函数接受分词分到一半的 token 数组,返回一个同样格式的 token 数组(这也就是不要对太长的文本分词的原因,不然这个数组会巨爆大)。

例子如下:

// @flow
import { Tokenizer } from 'segmentit';
import type { SegmentToken, TokenStartPosition } from 'segmentit';
export default class ChsNameTokenizer extends Tokenizer {
  split(words: Array<SegmentToken>): Array<SegmentToken> {
    // 可以获取到 this.segment 里的各种信息
    const POSTAG = this.segment.POSTAG;
    const TABLE = this.segment.getDict('TABLE');
    // ...
  }

Optimizer

Optimizer 是在分词结束后,发现有些难以利用字典处理的情况,却可以用启发式规则处理时,可以放这些启发式规则的地方,它的 doOptimize 函数同样接收一个 token 数组,返回一个同样格式的 token 数组。

除了 token 数组以外,你还可以自定义余下的参数,比如在下面的例子里,我们会递归调用自己一次,通过第二个参数判断递归深度:

// @flow
import { Optimizer } from './BaseModule';
import type { SegmentToken } from './type';
export default class DictOptimizer extends Optimizer {
  doOptimize(words: Array<SegmentToken>, isNotFirst: boolean): Array<SegmentToken> {
    // 可以获取到 this.segment 里的各种信息
    const POSTAG = this.segment.POSTAG;
    const TABLE = this.segment.getDict('TABLE');
    // ...
    // 针对组合数字后无法识别新组合的数字问题,需要重新扫描一次
    return isNotFirst === true ? words : this.doOptimize(words, true);
  }

例如目前各种分词工具都没法把「一条红色内裤」中的红色标对词性,但在 segmentit 里我加了个简单的 AdjectiveOptimizer 来处理它:

// @flow
// https://github.com/linonetwo/segmentit/blob/master/src/module/AdjectiveOptimizer.js
import { Optimizer } from './BaseModule';
import type { SegmentToken } from './type';

import { colors } from './COLORS';

// 把一些错认为名词的词标注为形容词,或者对名词作定语的情况
export default class AdjectiveOptimizer extends Optimizer {
  doOptimize(words: Array<SegmentToken>): Array<SegmentToken> {
    const { POSTAG } = this.segment;
    let index = 0;
    while (index < words.length) {
      const word = words[index];
      const nextword = words[index + 1];
      if (nextword) {
        // 对于<颜色>+<的>,直接判断颜色是形容词(字典里颜色都是名词)
        if (nextword.p === POSTAG.D_U && colors.includes(word.w)) {
          word.p = POSTAG.D_A;
        }
        // 如果是连续的两个名词,前一个是颜色,那这个颜色也是形容词
        if (word.p === POSTAG.D_N && nextword.p === POSTAG.D_N && colors.includes(word.w)) {
          word.p = POSTAG.D_A;
        }
      }
      // 移到下一个单词
      index += 1;
    }
    return words;
  }
}

License

MIT LICENSED