schema-detector
v1.0.1
Published
Heuristic "column" type & size analysis w/ enumeration detection.
Downloads
2
Readme
Schema Analyzer
An Open Source joint by Dan Levy ✨
Analyze column type & size summary from any input JSON array!
Schema Analyzer is the core library behind Dan's Schema Generator.
Features
The primary goal is to support any input JSON/CSV and infer as much as possible. More data will generally yield better results.
- [x] Heuristic type analysis for arrays of objects.
- [x] Browser-based (local, no server necessary)
- [x] Automatic type detection:
- [x] Object Id (MongoDB's 96 bit/12 Byte ID. 4B timestamp + 3B MachineID + 2B ProcessID + 3B counter)
- [x] UUID/GUID (Common 128 bit/16 Byte ID. Stored as a hex string, dash delimited in parts: 8, 4, 4, 4, 12)
- [x] Boolean (detects obvious strings
true
,false
,Y
,N
) - [x] Date (Smart detection via comprehensive regex pattern)
- [x] Timestamp (integer, number of milliseconds since unix epoch)
- [x] Currency (62 currency symbols supported)
- [x] Float (w/ scale & precision measurements)
- [x] Number (Integers)
- [x] Null (sparse column data helps w/ certain inferences)
- [x] Email (falls back to string)
- [x] String (big text and varchar awareness)
- [x] Array (includes min/max/avg length)
- [x] Object
- [x] Detects column size minimum, maximum and average
- [x] Includes data points at the 30th, 60th and 90th percentiles (for detecting outliers and enum types!)
- [x] Handles some error/outliers
- [x] Quantify # of unique values per column
- [ ] Identify enum Fields w/ Values
- [ ] Identify
Not Null
fields - [ ] Nested data structure & multi-table relational output.
- [ ] Un-de-normalize JSON into flat typed objects.
Data Analysis Results
What does this library's analysis look like?
It consists of 3 key top-level properties:
totalRows
- # of rows analyzed.uniques
- a 'map' of field names & the # of unique values found.fields
- field names with all detected types (includes metadata for each type detected, with any overlaps. e.g. an Email is also a String,"42"
is a String and Number)
Review the raw results below
Details about nested types can be found below.
{
"totalRows": 5,
"uniques": {
"id": 5,
"name": 5,
"role": 3,
"email": 5,
"createdAt": 5,
"accountConfirmed": 2
},
"fields": {
"id": {
"Number": {
"value": { "min": 1, "avg": 3, "max": 5, "percentiles": [ 2, 4, 5 ] },
"count": 5,
"rank": 8
},
"String": {
"length": { "min": 1, "avg": 1, "max": 1, "percentiles": [ 1, 1, 1 ] },
"count": 5,
"rank": 12
}
},
"name": {
"String": {
"length": { "min": 3, "avg": 7.2, "max": 15, "percentiles": [ 3, 10, 15 ] },
"count": 5,
"rank": 12
}
},
"role": {
"String": {
"length": { "min": 4, "avg": 5.4, "max": 9, "percentiles": [ 4, 5, 9 ] },
"count": 5,
"rank": 12
}
},
"email": {
"Email": {
"count": 5,
"rank": 11
},
"String": {
"length": { "min": 15, "avg": 19.4, "max": 26, "percentiles": [ 5, 3, 6 ] },
"count": 5,
"rank": 12
}
},
"createdAt": {
"String": {
"length": { "min": 6, "avg": 9.2, "max": 10, "percentiles": [ 0, 0, 0 ] },
"count": 5,
"rank": 12
}
},
"accountConfirmed": {
"Boolean": {
"count": 5,
"rank": 3
},
"String": {
"length": { "min": 4, "avg": 4.4, "max": 5, "percentiles": [ 4, 5, 5 ] },
"count": 5,
"rank": 12
}
}
}
}
Sample input dataset for the example results above:
| id | name | role | email | createdAt | accountConfirmed |
|----|-----------------|-----------|------------------------------|------------|------------------|
| 1 | Eve | poweruser | [email protected]
| 01/20/2020 | false |
| 2 | Alice | user | [email protected]
| 02/02/2020 | true |
| 3 | Bob | user | [email protected]
| 12/31/2019 | true |
| 4 | Elliot Alderson | admin | [email protected]
| 01/01/2001 | false |
| 5 | Sam Sepiol | admin | [email protected]
| 9/9/99 | true |
Number & String Range Object Details
Numeric and String types include a summary of the observed field sizes:
min
the minimum number or string lengthmax
the maximum number or string lengthavg
the average number or string lengthpercentiles[30th, 60th, 90th]
values from theNth
percentile number or string length
{
"min": 1, "avg": 1, "max": 1,
"percentiles": [ 1, 1, 1 ]
}
Notes
We recommend you provide at least 100+ rows. Accuracy increases greatly with 1,000 rows.
The following features require a certain minimum # of records:
- Enumeration detection.
- 100+ Rows Required.
- Number of unique values must not exceed 20 or 5% of the total number of records. (100 records will identify as Enum w/ 5 values. Up to 20 are possible given 400 or 1,000+.)
Not Null
detection.- where rowCount === field count