npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

schema-alchemia

v1.2.0

Published

This is a NPM module to translate datasets based on schema models, the module is also able to run scripts defined on the model to make data transformation and map reduce.

Downloads

17

Readme

Schema-Alchemia

This is a NPM module to translate datasets based on schema models, the module is also able to run scripts defined on the model to make data transformation and map reduce.

Features

  • Data transformation useful to migrate between different DBs
  • Map-reduce capabilities
  • Data base agnostic
  • API responses transformation

README.md

Examples of usage

Install

npm install --save schema_alchemia

Basic usage (Single document transformation)

'use strict'
var alchemia = require('schema_alchemia');

var schema1 = {
    "user_id": "user.id",
    "user_name": "user.name",
    "user_phone": "user.phone"
}

var schema2 = {
    "user.id": "user_id",
    "user.name": "user_name",
    "user.phone": "user_phone"
}

|user_id | user_name | user_phone |:--------:|:-----------:|:-----------:| | 10 | Jhon Doe | +1415123456 |

var data = {
    "user_id": 10,
    "user_name": "John Doe",
    "user_phone": "+1415123456"
}

var schema_transformation = new alchemia({
    schema_name_1: schema1, 
    schema_name_2: schema2,
    ignore_null_source:true //it can be ignored, by default it is false
});

schema_transformation.set_source_schema('schema_name_1', data);
schema_transformation.set_target_schema('schema_name_2');

var result = schema_transformation.transform();

The result will be something like:

{
	user: { 
		id: 10, 
		name: 'John Doe', 
		phone: '+1415123456' 
	}
}

Basic usage (Multiple document transformation)

|user_id | user_name | user_phone |:--------:|:-----------:|:-----------:| | 10 | Jhon Doe | +1415123456 | | 11 | Jenny Smith | +1415187456 |

var data = [
    {
        "user_id": 10,
        "user_name": "John Doe",
        "user_phone": "+1415123456"
    },
    {
        "user_id": 11,
        "user_name": "Jenny Smith",
        "user_phone": "+1415187456"
    }
]

var schema_transformation = new alchemia({
    schema_name_1: schema1, 
    schema_name_2: schema2
});

schema_transformation.set_source_schema('schema_name_1', data);
schema_transformation.set_target_schema('schema_name_2');

var result = schema_transformation.transform();

The result will be something like:

[
  {
    "user": {
      "id": 10,
      "name": "John Doe",
      "phone": "+1415123456"
    }
  },
  {
    "user": {
      "id": 11,
      "name": "Jenny Smith",
      "phone": "+1415187456"
    }
  }
]

Advance usage (Multiple document transformation)

Data transformation using scripts defined in the schema definition

|user_id | user_name | user_phone |:--------:|:-----------:|:-----------:| | 10 | Jhon Doe | +14151234567 | | 11 | Jenny Smith | +14151234321 |

var schema1 = {
    "user_id": "user.id",
    "user_name": "user.name",
    "user_phone": {
        "target": "user.phone",
        "script": "() => { if(!value){ return ''; } return value.substring(0,2) + '-(' + value.substring(2,5) + ')-' + value.substring(5, 8) + '-' + value.substring(8,12); }"
    },
}

var schema2 = {
    "user.id": "user_id",
    "user.name": "user_name",
    "user.phone": {
        "target": "user_phone",
        "script": "() => { return value.replace( new RegExp('[^+0-9,]+','g'), '');}"
    }
}

var data = [
    {
        "user_id": 10,
        "user_name": "John Doe",
        "user_phone": "+14151234567"
    },
    {
        "user_id": 11,
        "user_name": "Jenny Smith",
        "user_phone": "+14151234321"
    }
]

var schema_transformation = new alchemia({
    schema_name_1: schema1, 
    schema_name_2: schema2
});

schema_transformation.set_source_schema('schema_name_1', data);
schema_transformation.set_target_schema('schema_name_2');

let result_1 = schema_transformation.transform();

console.log(JSON.stringify(result_1,null,2));

The result will be something like:

The phone number has been formated with a simple script in the definition

[
  {
    "user": {
      "id": 10,
      "name": "John Doe",
      "phone": "+1-(415)-123-4567"
    }
  },
  {
    "user": {
      "id": 11,
      "name": "Jenny Smith",
      "phone": "+1-(415)-123-4321"
    }
  }
]

Now we can go backward using the same result_1 and the schema1 as the target schema

schema_transformation.set_source_schema('schema_name_2', result_1);
schema_transformation.set_target_schema('schema_name_1');

let result_2 = schema_transformation.transform();
console.log(JSON.stringify(result_2,null,2));

The result will be the same as the initial data:

Take a look in the phone number, has been converted based in the script defined in the schema2

[
  {
    "user_id": 10,
    "user_name": "John Doe",
    "user_phone": "+14151234567"
  },
  {
    "user_id": 11,
    "user_name": "Jenny Smith",
    "user_phone": "+14151234321"
  }
]

Advance usage (Performing Map-Reduce based on scripts defined on the schema)

The schema definition changes a little bit but, it's a simple way to reduce duplicated data into a single document

| user_id | user_name | user_phone | phone_type | |:--------:|:-----------:|:-----------:|:-----------:| | 10 | Jhon Doe | +14151234567 | cellphone | | 10 | Jhon Doe | +14153214098 | fax | | 11 | Jenny Smith | +14151234321 | cellphone |

The source code for this example
var schema1 = {
    "group_by": "user_id",
    "model": {
        "user_id": "user.id",
        "user_name": "user.name",
        "user_phone": {
            "target": "user.phone",
            "script": "() => { if(!Array.isArray(obj.user.phone)){ return [{type: data_source.phone_type, number: value}];} obj.user.phone.push({type: data_source.phone_type, number: value}) }"
        }
    }
}

var schema2 = {}

var data = [
    {
        "user_id": 10,
        "user_name": "John Doe",
        "user_phone": "+14151234567",
        "phone_type": "cellphone"
    },
    {
        "user_id": 10,
        "user_name": "Jhon Doe",
        "user_phone": "+14153214098",
        "phone_type": "fax"
    },
    {
        "user_id": 11,
        "user_name": "Jenny Smith",
        "user_phone": "+14151234321",
        "phone_type": "cellphone"
    }
]

var schema_transformation = new alchemia({
    schema_name_1: schema1, 
    schema_name_2: schema2
});

schema_transformation.set_source_schema('schema_name_1', data);
schema_transformation.set_target_schema('schema_name_2');

let result_1 = schema_transformation.transform();

console.log(JSON.stringify(result_1,null,2));
The result will be something like
{
  "10": {
    "user": {
      "id": 10,
      "name": "Jhon Doe",
      "phone": [
        {
          "type": "cellphone",
          "number": "+14151234567"
        },
        {
          "type": "fax",
          "number": "+14153214098"
        }
      ]
    }
  },
  "11": {
    "user": {
      "id": 11,
      "name": "Jenny Smith",
      "phone": [
        {
          "type": "cellphone",
          "number": "+14151234321"
        }
      ]
    }
  }
}