npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

sample-gator

v1.1.2

Published

Real-time streaming data sample-r and aggre-gator with closed-circuit recording, efficient memory management and FIFO/LIFO readout sweeps, providing endless (and seamless) data capture, and processing.

Downloads

4

Readme

sample-gator

Real-time streaming data sample-r and aggre-gator with closed-circuit recording, efficient memory management and FIFO/LIFO readout sweeps, providing endless (and seamless) data capture, and processing.

NPM JavaScript Style Guide

Why

You are building a real-time high frequency data processing app that does something along the lines of:

  • IOT data collection / Sensor monitoring / Real-time analytics
  • Algorithmic Trading / Real-time Risk analysis / Data Aggregation
  • Audio / Video / Real-time Digital Signal Processing
  • AI / ML Prediction / Classification / Regression
  • Real-time Data Science

What

This library will easily do the following for you:

  • Capture and allocate real-time sporadic data into periodic, interval based samples
  • Map data to custom fields (Series)
  • Perform spot, rolling and cumulative calculations e.g. min, max, mean, sum, stdev, etc.
  • Interpolate and impute values across any number of axes
  • Bifurcate/segregate data into tracks based on attributes
  • Capture and synchronize data from multiple sources

Flyweight Pattern

The lib offers several important advantages in Performance and Memory utilization, as it records data into Closed-circuit buffers caleld Tracks, similar to the way CCTV works.
You may also know this Design Pattern as Flyweight. Each track is essentially an array of fixed length, containing empty placeholders in the shape of your data.

How

All you need to do is:

  1. Set the sampling rate - the time interval in milliseconds between each sample.
  2. Add fields with formulas

Install

yarn add sample-gator

Usage in React

To use it in React, you need three files:

| File | Purpose | | - | - | | App.tsx | To use or display the data | | createSampler.ts | (no changes needed) | | setup.ts | Your configuration, fields, calculations |


// App.tsx - Write your app logic here.

import React, { useEffect, useState } from "react";
import createSampler, { tracks, columns } from './createSampler';
import MultiTrackTableRenderer from "../MultiTrackTableRenderer";

export default () => {
  const [dataSets, setDataSets] = useState<any>();

  // Init sampler
  useEffect(() => {

    createSampler({ 
      onTrackUpdate: () => {
        
        // Each track (if many) is read separately
        // buy you can combind data from multiple tracks
        
        const data = {};
                
        tracks.forEach(track => {

          const array   = new Array(track.length);
          const columns = columns[track.key];

          // instead of reading into an array, 
          // you can plot it into a chart, for example
          // for more efficiency
          track.fifo((pos, buffer) => {
            items[pos.ordinal] = buffer[pos.index];
          });

          data[track.key] = { array, columns };

        });

        // data from all tracks are here
        // indexed by track key
        setDataSets(data);

      }
    })
  }, []);
  return <>
    {Object.entries(dataSets).map(([key, value]) => 
        <DataTable key={key} data={value.array} columns={value.columns} />
    )}
  </>
}

This is the setup script in three parts. Define your cfields and custom expressions here.

// setup.ts                     - Configure your fields and calculations here

import Sampler from "sample-gator";
import RandomWalk from '@reactiff/random-walk';

export const INTERVAL = 1000; // ms
export const LENGTH = 20;
export const FIELDS: any = {
  time:   { fn: (d: any) => d.time },
  price:  { fn: (d: any) => d.price,  fill: (d: any, pv: any) => pv },
  qty:    { fn: (d: any) => d.qty,    fill: (d: any, pv: any) => pv },
  exch:   { fn: (d: any) => d.exch,   fill: (d: any, pv: any) => pv },
};

// Combination of fields making up unique tracks
export const TRACK_KEYS = ["exch"];

// DATA LOADING AND SIMULATION
export const SAMPLING_ENABLED   = true;

// ... (continued setup.ts)     - Defining Custom Expressions

export const EXPRESSIONS = {
    
  sma3: (series: any) => series.price.mean(3),
  sma5: (series: any) => series.price.mean(5),
  sma8: (series: any) => series.price.mean(8),
  sma10: (series: any) => series.price.mean(10),
  ema10: (series: any) => {
    const n = 10;
    const key = `ema${n}`;
    const price = series.price;
    const calcSerie = series[key];
    if (calcSerie.availableLength < n + 1) return undefined;
    let prev = calcSerie.value(-1);
    if (!prev) prev = price.mean(n, -1);
    const k = 2 / (n + 1);
    const ema = price.value() * k + prev * (1 - k);
    return ema;
  },
  cross: (_: any) => {
    // check cross to the up side
    if (_.ema10.value( 0) > _.sma10.value( 0) && _.ema10.value(-1) < _.sma10.value(-1)) return 1
    // check cross to the down side
    if (_.ema10.value( 0) < _.sma10.value( 0) && _.ema10.value(-1) > _.sma10.value(-1)) return -1;
    return undefined;
  }
}

// ... (continued setup.ts)     - Preloading Data

const date                      = new Date();
const rndWalk                   = new RandomWalk(1, 1000, 500, 10, 10);

// DATA PRELOADING
export const PRELOADING_ENABLED = true;
export const PRELOAD            = (sampler: Sampler, buffer: any) => {
    
    const st                    = date.getTime()
    const rm                    = st % 1000

    buffer.time                 = st - rm - 1000;

    for (let i = 0; i < LENGTH - 1; i++) {

        buffer.time             += 1000;
        buffer.price            = rndWalk.next();
        buffer.qty              = Math.round(Math.random() * 100 - 50);
        buffer.exch             = 'ABC';

        sampler.preload(buffer);
    }
}

// ... (continued setup.ts)     - Simulating Live Data Events

const SIM_FIXED_INTERVAL        = 200;
const SIM_RANDOM_INTERVAL       = false;
const SIM_MIN_INTERVAL          = 20;
const SIM_MAX_INTERVAL          = 1500;

export const SIMULATION_ENABLED = true;
export const SIMULATE           = (sampler: Sampler, input_buffer: any) => {
    
    input_buffer.time           = new Date().getTime();
    input_buffer.price          = rndWalk.next();
    input_buffer.qty            = Math.round(Math.random() * 100 - 50);

    const exch                  = exchanges[0] // exchanges[Math.round(Math.random())];
    input_buffer.exch           = exch;

    console.log('Sent: ', exch);

    sampler.capture(input_buffer);
    
    let interval                = SIM_FIXED_INTERVAL;

    if (SIM_RANDOM_INTERVAL) {
      interval = Math.random() * (SIM_MAX_INTERVAL - SIM_MIN_INTERVAL) + SIM_MIN_INTERVAL;
    }

    setTimeout((s, b) => {
      SIMULATE(s, b)
    }, interval, sampler, input_buffer );
}

3) createSampler.ts

// YOU DO NOT NEED TO CHANGE ANYTHING IN THIS FILE, UNLESS YOU HAVE TO

import Sampler, { ClosedCircuitBuffer } from "sample-gator";
import * as __ from "./setup";
export type TrackDataDictionary = { [index: string]: any[] };
export type SamplerEventHandlers = {
  onIntervalData?: () => void;
  onTrackUpdate?: (track: ClosedCircuitBuffer) => void;
};

const _events: SamplerEventHandlers = {
  onIntervalData: undefined,
  onTrackUpdate: undefined,
};

const input_buffer: any = {};
export const output: TrackDataDictionary = {};
export const columns: TrackDataDictionary = {};
export const tracks: ClosedCircuitBuffer[] = [];

const createSampler = (eventHandlers: SamplerEventHandlers) => {
  Object.assign(_events, eventHandlers);

  const gator = new Sampler({
    interval: __.INTERVAL,
    bufferLength: __.LENGTH,
    trackKeys: __.TRACK_KEYS,
    fields: __.FIELDS,
  });

  // init INPUT placeholder
  const blank = gator.sampler.createSample();
  Object.assign(input_buffer, blank);
  Object.entries(__.EXPRESSIONS).map(([key, fn]: any[]) => gator.addExpression(key, fn));

  gator.onTrackStart = (track) => {
    output[track.key] = new Array(__.LENGTH);
    tracks.push(track);
    columns[track.key] = Object.keys(track.series);
    track.onUpdate = () => {
      _events.onTrackUpdate && _events.onTrackUpdate(track);
    };
  };

  gator.onInterval = () => _events.onIntervalData && _events.onIntervalData();

  if (__.PRELOADING_ENABLED) {
    __.PRELOAD(gator, input_buffer);
    _events.onIntervalData && _events.onIntervalData();
  }

  if (__.SAMPLING_ENABLED) gator.startSampling();
  if (__.SIMULATION_ENABLED) __.SIMULATE(gator, input_buffer);
};

export default createSampler;

fifo() / lifo()

These methods facilitate reading data from the Closed-circuit buffer, taking care of complicated cursor and offset positions.

They both accept a callback of form:

(pos, track) => void

| Param | Description | | ----- | ----------- | | track | internal array of samples | | pos | indexer: { index, ordinal, relative } |

pos props

| Prop | Purpose | | ---- | ------- | | pos.index | 1 Sample index in the Track | | pos.ordinal | True iteration number (always zero based) | | pos.relative | Relative offset from cursor |

1 Sample index should only be used for accessing the Sample in the Track. It doesn't always start with zero, rather it starts with internal cursor position within the Closed-circuit loop.


Defining fields and spot calculations

In previous example we used an array of field names corresponding to data fields. You can define your own fields and how they should be calculated.

import { value, when } from 'sample-gator';

const field = {            
    _buy:       (d) => when(d.qty > 0, () => d.buy  = 1),  // [^4]
    _sell:      (d) => when(d.qty < 0, () => d.sell = 1),

    open:       {   
                    fn: (d, curr) => value(curr, d.price), 
                    fill: (d, pv) => p.close 
                },                  // [^5]

    high:       {   
                    fn: (d, curr) => Math.max(
                        d.price, 
                        value(curr, d.price)), 
                    fill: (d, pv) => p.close 
                }, 

    buyVol:     {   
                    fn: (d, curr) => when(d.buy, 
                        value(curr, 0) + d.qty), 
                    fill: () => 0 
                },
                
    cumNetVol:  {   
                    fn: (d, curr) => value(curr, 0) + d.qty, 
                    cumulative: true  // [^6]
                },
};

[^4] - Underscore fields are special - they are run first - they do not get added to sample (hidden) - they perform some operation e.g. here they set a value on the data object itself

[^5] - The fill() callback defines how the field's value should be calculated for empty Samples

[^6] - Cumulative fields do not get reset with each new sample, rather their values are rolled forward

import { FieldGroups } from '.';

const fields: {
    ...FieldGroups.cryptoTrade.time.fields,
    ...FieldGroups.cryptoTrade.ohlc.fields,
    ...FieldGroups.cryptoTrade.side.fields,
    ...FieldGroups.cryptoTrade.stats.fields,
    ...FieldGroups.cryptoTrade.volume.fields,
    ...FieldGroups.cryptoTrade.mv.fields,
},

Rolling Window / Moving Average calculations

(SMA)

You can define expressions by performing Rolling Window calculations, also known as Moving Averages on a single Serie, over N number of samples in its history. Here is how you would define a Simple Moving Average (SMA) of 10:

// Simple Moving Average over 10:
buffer.addExpression('sma10', (series) => {
    // get closing price Serie
    return series.close.mean(10);
})

once such expression is added, it can also be used in other expressions. For example, Exponential Moving Average (EMA) uses a slightly different formula, where it uses its previous value as the basis of calculation. However, there is no previous sample for the very First value in the serie of course, that's why previous SMA of same length is used. Therefore, an EMA expression requires N + 1 elements in the serie to work.

(EMA)

// Exponential Moving Average of 10
buffer.addExpression('ema10', (series) => {

    const sma10 = series.sma10; 
    const ema10 = series.ema10; // reference this serie  
  
    if (ema10.availableLength < 11) {
        return undefined;
    }

    // get previous value
    let prev = ema10.value(-1);
    if (!prev) {
        prev = sma10.value(-1);
        // or calculate on the fly:
        prev = series.price.mean(n, -1);
    }

    const k = 2 / (n + 1);
    const ema = series.price.value() * k + prev * (1 - k);

    return ema;
})

Crossing Moving Averages

Here is another useful example where we check if EMA and SMA cross each other. Note that the output is only generated when one of the two conditions is met:

(EMA crosses SMA)

buffer.addExpression('ema10xsma10', (_: any) => {

  // check cross to the up side
  if (_.ema10.value( 0) > _.sma10.value( 0) &&
      _.ema10.value(-1) < _.sma10.value(-1)) {
        return 1;
  }

  // check cross to the down side
  if (_.ema10.value( 0) < _.sma10.value( 0) &&
      _.ema10.value(-1) > _.sma10.value(-1)) {
        return -1;
  }
  
  return undefined;
});

License

MIT © Rick Ellis