npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

salient-maps

v0.1.6

Published

Various open source salient maps

Downloads

20

Readme

salient-maps

Various open source salient maps.

Developer Usage

Example using the Deep Gaze model.

const models = require('salient-maps');
const cv = require('opencv4nodejs');

const Deep = models.deep.load();
const deep = new Deep({ width: 200, height: 200 });
const salientMap = deep.computeSaliency(cv.imread('myimage.jpg'));

Options

| Option | Type | Default | Info | | --- | --- | --- | --- | | width | number | 200 | Width of saliency map. It's not recommended to go above 300 or below 100. | | height | number | 200 | Height of saliency map. It's not recommended to go above 300 or below 100. |

What to do with salient map?

While it's entirely up to you how use these maps, the original intent of this project was to be paired with the salient-autofocus project for providing fast image auto-focus capabilities.

Models

| ID | Description | License | Usage | | --- | --- | --- | --- | | deep | MIT | Deep Gaze port of FASA (Fast, Accurate, and Size-Aware Salient Object Detection) algorithm | Recommended for most static usage where high accuracy is important, and near-realtime is sufficient performance (tunable by reducing map size). May not be ideal for video unless you drop map size to 150^2 or lower. | | deep-rgb | MIT | A varient of Deep Gaze port but leveraging the RGB colour space instead of LAB. | Not recommended. Useful for comparison. Can perform better. | | spectral | BSD | A port of the Spectral Residual model from OpenCV Contributions. | Amazing performance, great for video, but at the cost of quality/accuracy. | | fine | BSD | A port of the Fine Grained model from OpenCV Contributions. | Interesting for testing but useless for realtime applications. |

Want to contribute?

Installation

Typical local setup.

git clone [email protected]:asilvas/salient-maps.git
cd salient-maps
npm i

Import Assets

By default testing looks at trainer/image-source, so you can put any images you like there. Or follow the below instructions to import a known dataset.

  1. Download and extract CAT2000
  2. Run node trainer/scripts/import-CAT2000.js {path-to-CAT2000}

The benefit of using the above script is it'll seperate the truth maps into trainer/image-truth, which are optional.

Preview

You can run visual previews of the available saliency maps against the dataset via:

npm run preview

Benchmark

Compare performance data between models:

npm run benchmark

Export

Also available is the ability to export the salient map data to trainer/image-saliency folder, broken down by the saliency model. This permits review of maps from disk, in addition to being in a convenient format for submission to the mit saliency benchmark for quality analysis against other models.

npm run export

License

While this project falls under an MIT license, each of the models are subject to their own license. See Models for details.