runcheck
v1.4.0
Published
A tiny (less than 2 KiB Gzipped) and treeshakable! lib for typescript runtime type checks with autofix support
Downloads
235
Readme
Runcheck
A lib for js/typescript runtime type checks with autofix support. Runcheck has the goal of being very lightweight and fast ⚡. Because of that, it has only around 2.9kb Gzipped (at v0.30), has no dependencies and is tree-shakeable!
Obs: Runcheck is in Beta and it's api can still change
Benchmarks
One of the goals of runcheck is to be blazing fast. Here are some benchmarks:
runcheck dist
is the same version asruncheck
in the benchmarks but bundled
Installation
pnpm add runcheck
Basic types:
| runcheck type | ts type equivalent |
| -------------------------------- | ------------------------------------------------- |
| rc_string
| string
|
| rc_number
| number
|
| rc_boolean
| boolean
|
| rc_any
| any
|
| rc_null
| null
|
| rc_undefined
| undefined
|
| rc_date
| Date
|
| rc_intanceof(instance: T)
| Classes typecheck in general |
| rc_literals(...literals: T[])
| Type literal in general like hello
, true
, 1
|
| rc_union(...types: T[])
| Union types in general like string \| 1
|
| rc_array<T>(type: T)
| T[]
|
| rc_tuple<T>(...types: T[])
| [T, T]
|
| rc_intersection(...types: T[])
| Intersection types like {a:string} & {b:string}
|
Array types:
Array loose check
You can also use rc_loose_array
to reject the wrong elements of an array and return the valid ones.
const shape = rc_loose_array(rc_string)
const input = ['hello', 1, 'world']
const result = rc_parse(input, shape)
// result.data will be ['hello', 'world']
// result.warnings will return the warnings about the invalid elements
Checking unique values
With the rc_array
or rc_loose_array
type you can also use the unique
option to check if the array has no duplicated values.
const shape = rc_array(rc_string, { unique: true })
For arrays of objects, you can provide a string to unique
option to check if the array items has no duplicated values of a specific property.
const shape = rc_array(rc_object({ id: rc_string }), { unique: 'id' })
You can also provide a function to unique
option to check if the array items has no duplicated values based on a custom function return.
const shape = rc_array(
rc_object({ id: rc_string, meta_id: rc_string.optional() }),
{
unique: (item) => item.meta_id || item.id,
},
)
Object types:
rc_object
const shape = rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
// nested objects
address: {
street: rc_string,
number: rc_number,
},
})
The rc_object
will allow extra properties but, any extra propertie will be striped in parsing. To allow extra in parsing properties, use rc_extends_obj
.
Marking optional keys
Optional keys can be marked with the optionalKey()
method.
const shape = rc_object({
name: rc_string.optionalKey(),
age: rc_number,
isCool: rc_boolean,
})
/*
infered type will be:
{
name?: string | undefined,
age: number,
isCool: boolean,
}
instead of:
{
name: string | undefined,
age: number,
isCool: boolean,
}
*/
rc_obj_strict
The same as rc_object
but, any extra properties will be throw an error in parsing.
rc_obj_merge
Allow to merge two rc_object
types. Example:
const shape = rc_obj_merge(
rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
}),
rc_object({
address: rc_string,
phone: rc_string,
}),
)
rc_record
Validates only the values of a object, equivalent to Record<string, T>
in typescript.
const shape = rc_record(rc_number)
// shape type is `Record<string, number>`
// `rc_record` also accepts the following options:
const shape = rc_record(rc_number, {
checkKey: (key) => key !== 'a', // Check if the key is valid
looseCheck: true, // If true, the invalid keys will be striped
})
rc_loose_record
Validates only the values of a object, equivalent to Record<string, T>
in typescript. But, it will reject invalid keys and return the valid ones.
const shape = rc_loose_record(rc_number)
Parsing
import { rc_parse } from 'runcheck'
const input = JSON.parse(jsonInput)
const parseResult = rc_parse(input, rc_array(rc_string))
if (parseResult.error) {
throw new Error(parseResult.errors.join('\n'))
// Errors are a array of strings
}
const result = parseResult.data
// Do something with result
You can also use rc_parser
to create a reusable parser.
import { rc_parser } from 'runcheck'
const parser = rc_parser(rc_array(rc_string))
const parseResult = parser(jsonInput)
const parseResult2 = parser(jsonInput2)
Strict parsing
Use the strict
option to disable autofix and fallback
const parseResult = rc_parse(
input,
// fallback will be ignored
rc_array(rc_string).withFallback([]),
{
strict: true,
},
)
Type assertion
Use rc_is_valid
and rc_validator
to do a simple type assertion.
import { rc_is_valid } from 'runcheck'
const input = JSON.parse(jsonInput)
if (rc_is_valid(input, rc_array(rc_string))) {
// input will be inferred by ts as `string[]`
}
Type assertion in a parse result
Use rc_assert_is_valid
to do a simple type assertion in a parse result.
import { rc_assert_is_valid } from 'runcheck'
const input = JSON.parse(jsonInput)
const result = rc_parse(input, rc_array(rc_string))
rc_assert_is_valid(result)
// will throw an error if the result is invalid, otherwise will narrow the result type to a valid result
Loose parsing
Use rc_unwrap_or
and rc_unwrap_or_null
to do a loose parsing.
import { rc_unwrap_or, rc_unwrap_or_null } from 'runcheck'
const input = JSON.parse(jsonInput)
const result = rc_unwrap_or(input, rc_array(rc_string), [])
// will fallback to [] if the input is invalid
const result2 = rc_unwrap_or_null(input, rc_array(rc_string))
// will fallback to null if the input is invalid
Strict parsing
Use rc_unwrap
to throw an RcValidationError
error if the input is invalid.
import { rc_unwrap, RcValidationError } from 'runcheck'
const input = JSON.parse(jsonInput)
try {
const result = rc_unwrap(input, rc_array(rc_string))
} catch (error) {
if (error instanceof RcValidationError) {
// handle error
}
}
Autofixing and fallback values in parsing
Values can be autofixed and fallback values can be provided for parsing. The checks will pass but the result will return warnings messages.
type SuccessResult = {
error: false
data: T
warnings: string[] | false
}
Fallback
Use the method rc_[type].withFallback(fallback)
to provide a fallback value if the input is not valid.
const input = 'hello'
const result = rc_parse(input, rc_string.withFallback('world'))
AutoFix
You can also use rc_[type].autoFix()
to automatically fix the input if it is not valid.
const input = 1
const result = rc_parse(
input,
rc_string.autoFix((input) => input.toString()),
)
There are also some predefined autofixed types that you can import:
import { rc_string_autofix, rc_boolean_autofix } from 'runcheck/autofixable'
// use like any other type
Performing custom checks
You can also use rc_[type].where(customCheckFunction)
to perform custom checks.
const input = 1
const positiveNumberType = rc_number.where((input) => input > 0)
Infer types from schemas
You can use RcInferType<typeof schema>
to infer the types from a schema.
const schema = rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
})
export type Person = RcInferType<typeof schema>
You can also use the RcPrettyInferType<typeof schema>
to get a more readable type.
Type modifiers
You can use also modiers like rc_string.optional()
to extend the rc types:
| runcheck modifier | ts type equivalent |
| ----------------------- | ------------------------ |
| rc_[type].optional()
| T \| undefined
|
| rc_[type].orNull()
| T \| null
|
| rc_[type].orNullish()
| T \| null \| undefined
|
Recursive types
You can use rc_recursive
to create recursive types. But the types can't be inferred in this case. So you need to provide the type manually.
type MenuTree = {
name: string
children: MenuTree[]
}
// the type should be provided manually to the variable in this case
const menuTreeSchema: RcType<MenuTree[]> = rc_array(
rc_object({
name: rc_string,
// you can safely autorefence the schema here
children: rc_recursive(() => menuTreeSchema),
}),
)
const result = rc_parse(input, menuTreeSchema)
Transform types
You can use rc_transform
to validate an input and transform it to another data.
const input = 'hello'
const result = rc_parse(
input,
rc_transform(rc_string, (input) => input.length),
)
Use the outputSchema
option to create a type that validates both the input and the output of the transform. So if the input matches the outputSchema
the transform will be ignored.
const input = 'hello'
const schema = rc_transform(rc_string, (input) => input.length, {
outputSchema: rc_number,
})
const result = rc_parse(input, schema)
if (result.ok) {
// this will be valid too
const transformedResult = rc_parse(result.data, schema)
}
// Be carefull: `outputSchema` will be used only if the input type is invalid
const schema = rc_transform(
rc_union(rc_string, rc_number),
(input) => String(input).toUperCase(),
{
// this will be ignored because has an equivalent type to the input
outputSchema: rc_string,
},
)
// use a more strict input type to avoid this
const schema = rc_transform(
rc_union(rc_string, rc_number).where((input) => isNotUperCase(input)),
(input) => String(input).toUperCase(),
{
outputSchema: rc_string.where((input) => isUperCase(input)),
},
)
Tranformed types which result can be validated with same schema
You may want to create a transformed type which result can be validated with the same schema. For this you can use the rc_narrow
type. Example:
const stringOrArrayOfStrings = rc_union(rc_string, rc_array(rc_string))
const schema = rc_narrow(stringOrArrayOfStrings, (input) =>
Array.isArray(input) ? input : [input],
)
const result = rc_parse('hello', schema)
if (result.ok) {
// the schema can safely be used to validate the result too
const transformedResult = rc_parse(result.data, schema)
}
Default types
You can use rc_default
to provide a default value if the input is undefined
.
const input = {
name: 'John',
}
const result = rc_parse(
input,
rc_object({
name: rc_string,
age: rc_default(rc_number, 20),
}),
)
if (result.ok) {
result.data.age // = 20
}
If you need to use default in nullish values you can use rc_nullish_default
.
Advanced object types
rc_get_from_key_as_fallback
Allows to rename a key in a object. Example:
const shape = rc_object({
// name will use the value of oldName if name is not present in input
// which will rename `oldName` to `name` in the result
name: rc_get_from_key_as_fallback('oldName', rc_string),
age: rc_number,
isCool: rc_boolean,
})
Snake case normalization
you can use rc_object
with the normalizeKeysFrom
option to normalize the keys of a object to snake case.
const shape = rc_object(
{
name: rc_string,
age: rc_number,
isCool: rc_boolean,
},
{ normalizeKeysFrom: 'snake_case' },
)
rc_parse({ name: 'John', age: 20, is_cool: true }, shape) // will not return an error and will normalize the response to { name: 'John', age: 20, isCool: true }
rc_get_obj_schema
Allows to get a subset of a object schema. Example:
const shape = rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
})
const nameSchema = rc_get_obj_schema(shape).name
rc_obj_extends
Don't strip unchecked keys from the result. Example:
const shape = rc_object({
name: rc_string,
})
const result = rc_parse(
{ name: 'John', age: 20, is_cool: true },
rc_obj_extends(shape),
)
// keys `age` and `is_cool` will be present in the result
result.data // { name: 'John', age: 20, is_cool: true }
rc_obj_pick
Allows to pick a subset of a object schema. Example:
const shape = rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
})
const nameSchema = rc_obj_pick(shape, ['name'])
rc_obj_omit
Allows to omit a subset of a object schema. Example:
const shape = rc_object({
name: rc_string,
age: rc_number,
isCool: rc_boolean,
})
const baseSchema = rc_obj_omit(shape, ['isCool'])
rc_obj_builder
Creates a rc_object
from a type. This gives better error messages and autocompletion.
type SchemaType = {
level1: {
level2: {
level3: {
level4: {
level5: number
}
}
}
}
optionalObj?: {
a: string
}
objOrNull: null | {
a: string
}
objOrNullish:
| null
| undefined
| {
a: string
}
}
const schema = rc_obj_builder<SchemaType>()({
level1: {
level2: {
level3: {
level4: {
level5: rc_string,
// better error here
},
},
},
},
optionalObj: [
'optional',
{
a: rc_string,
// better error here and autocompletion :)
},
],
objOrNull: [
'null_or',
{
a: rc_string,
},
],
objOrNullish: [
'nullish_or',
{
a: rc_string,
},
],
})
rc_discriminated_union
Creates a discriminated union type with faster check performance compared to rc_union
.
const networkState = rc_discriminated_union('state', {
loading: {},
success: {
response: rc_string,
},
error: {
code: rc_number,
},
})
const result = rc_unwrap(
rc_parse({ state: 'success', response: 'hello' }, networkState),
)
// result will be inferred as:
// | { state: 'loading' }
// | { state: 'success', response: string }
// | { state: 'error', code: number }
rc_array_filter_from_schema
Creates a two passes array validation. The first will validate the items against the filter schema and filter the item. The second will perform the type check against the filtered items.
const schema = rc_array_filter_from_schema(
// 1 validate the items against a filter schema
rc_object({
deleted: rc_boolean,
}),
// Then filter the items based on the filter schema result
(item) => !item.deleted,
// 2 validate the filtered items
rc_object({
value: rc_string,
}),
)
const result = rc_parse(
[
{ deleted: false, value: 'hello' },
{ deleted: true, value: 'world' },
],
schema,
)
// result.value === [{ value: 'hello' }]