npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

quadprog

v1.6.1

Published

Module for solving quadratic programming problems

Downloads

82,379

Readme

QUADPROG

Build Status NPM version

This module contains routines for solving quadratic programming problems, written in JavaScript.

quadprog is a porting of a R package: quadprog, implemented in Fortran.

It implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form min(d T b + 1=2b T Db) with the constraints AT b >= b0.

References

D. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages 226–239.

D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1–33.

Example

// ##
// ## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
// ## under the constraints: A^T b >= b0
// ## with b0 = (-8,2,0)^T
// ## and
// ##     (-4 2  0)
// ## A = (-3 1 -2)
// ##     ( 0 0  1)
// ## we can use solve.QP as follows:
// ##
// Dmat <- matrix(0,3,3)
// diag(Dmat) <- 1
// dvec <- c(0,5,0)
// Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
// bvec <- c(-8,2,0)
// solve.QP(Dmat,dvec,Amat,bvec=bvec)

var qp = require('quadprog');

var Dmat = [], dvec = [], Amat = [], bvec = [], res;

Dmat[1] = [];
Dmat[2] = [];
Dmat[3] = [];
Dmat[1][1] = 1;
Dmat[2][1] = 0;
Dmat[3][1] = 0;
Dmat[1][2] = 0;
Dmat[2][2] = 1;
Dmat[3][2] = 0;
Dmat[1][3] = 0;
Dmat[2][3] = 0;
Dmat[3][3] = 1;

dvec[1] = 0;
dvec[2] = 5;
dvec[3] = 0;

Amat[1] = [];
Amat[2] = [];
Amat[3] = [];
Amat[1][1] = -4;
Amat[2][1] = -3;
Amat[3][1] = 0;
Amat[1][2] = 2;
Amat[2][2] = 1;
Amat[3][2] = 0;
Amat[1][3] = 0;
Amat[2][3] = -2;
Amat[3][3] = 1;

bvec[1] = -8;
bvec[2] = 2;
bvec[3] = 0;

res = qp.solveQP(Dmat, dvec, Amat, bvec)

Installation

To install with npm:

npm install quadprog

Tested locally with Node.js 10.x and with R 3.4.1.

Notes

To maintain a one-to-one porting with the Fortran implementation, the array index starts from 1 and not from zero. Please, be aware and give a look at the examples in the test folder.

If you are using node-quadprog via Numeric.js, don't forget the releases may be not in sync. Latest release is here.

Applications

See also

Methods

solveQP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

Arguments

  • Dmat matrix appearing in the quadratic function to be minimized.

  • dvec vector appearing in the quadratic function to be minimized.

  • Amat matrix defining the constraints under which we want to minimize the quadratic function.

  • bvec vector holding the values of b0 (defaults to zero).

  • meq the first meq constraints are treated as equality constraints, all further as inequality constraints (defaults to 0).

  • factorized logical flag: if TRUE, then we are passing R1 (where D = RT R) instead of the matrix D in the argument Dmat.

Value

An object with the following property:

  • solution vector containing the solution of the quadratic programming problem.

  • value scalar, the value of the quadratic function at the solution

  • unconstrained.solution vector containing the unconstrained minimizer of the quadratic function.

  • iterations vector of length 2, the first component contains the number of iterations the algorithm needed, the second indicates how often constraints became inactive after becoming active first.

  • Lagrangian vector with the Lagrangian multipliers at the solution.

  • iact vector with the indices of the active constraints at the solution.

  • message string containing an error message, if the call failed, otherwise empty.

Testing

Base test cases are in json formatted files with the name <name>-data.json. These can be passed into solve.R to create the standard R results for solveQP with the name <name>-result.json. The standard usage is Rscript solve.R *-data.json, but you may wish to only create result files for specific tests. The combination of these files is then used by solution-test.js and bench.js.

Adding Tests

To add a new test simply create a file called <name>-data.json in the test directory, and then call Rscript solve.R <name>-data.json and commit the results.