npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

pprec

v0.0.92

Published

a recommender engine node-js package for general use and easy to integrate

Downloads

33

Readme

pprec

PPREC is a node-js library made for web applications to help them integrate a recommendation systems easily. The library offers a higher level of abstraction for developers who are not comfortable with concepts like tensors, layers, optimizers and loss functions, and want to add a recommender in few lines of code.

To run the project you need to have redis installed then start it:

redis-server

and install the package in your project:

npm install pprec

Getting started

Here is a basic usage for pprec, just follow the steps:

  1. Import pprec
import { dataBlock, learner } from 'pprec';
  1. Do you have exiting dataset of past ratings of your service users?
const myLearner = learner({ learningRate: 1e-3 });
  1. If your website have new users or items you can tell pprec about them like this.
  2. if a user rated an item, you should also tell pprec so it can adjust its recommendations on it like this.
  3. Generate k recommendations for a user:
// recommend 7 items for the user with the ID = "MohamedNaas001"
myLearner.recommendItems("MohamedNaas001", 7)

Usage

Load data

You can either load data in pprec from a csv file or existing tensors:

  • CSV file: Specify the columns names that contains the information about the users, items, and ratings.
const data = await dataBlock().fromCsv("data.csv", {
        userColumn: 'user',
        itemColumn: 'movie', 
        ratingColumn: 'rating',
        ratingRange: [0, 5]
        });
  • Javascript array:
const data = dataBlock().fromArray(
    items = [10,7,3,10],
    users = [15,30,1,500],
    ratings = [1,2,2,5]);

if you don't have any data yet to use for training jump to Without DataBlock.

Creating a Learner

Learner is the responsible for training the recommendation model and infrencing/generating recommendations from it. To create a learner:

const myLearner = learner(data);

Optimize the Learner

fit (train) the learner for few epoches:

await myLearner.fit(3);

Adding a rating

pprec supports online learning so it will allow adding a new rating to the dataset and adjust the learner to it:

await myLearner.addRating("MohamedNaas001", "The office", 5);

You do not need to run myLearner.fit() again, as it is already embedded in the addRating() method.

Adding new user/item

In case there is a new user or item in your system, you should explicitly inform pprec before trying to add recommendations and generating recommendations to them:

myLearner.newUser("UUID25435") //add a new user with the id UUID25435

myLearner.newItem("Squid Games") //add a new user with the id UUID25435

The new user/item latent factors (embeddings) will be the average of the existing latent factors for all the existing users/items.

Generating recommendation

To generate k items recommendations for a user just do this

console.log(myLearner.recommendItems("MohamedNaas001", 7, false)); 
//recommend 7 items for the user with ID = "MohamedNaas001" 

By default, the recommendation will not be repeated, this means if a user already viewed or rated an item it will be saved in redis to be eliminated in the recommendation process. Switch alreadyWatched to true to remove this feature.

To tell pprec that a user viewed an item:

myLearner.viewed("MohamedNaas001", "Dark")

viewing an item means that the user viewed the item but it did not rate it.

Similar items/users

You can get the k similar items to an item or users to a user using the cosine similarity between the items/users latent factors:

console.log(myLearner.mostSimilarUsers(""MohamedNaas001""));

console.log(myLearner.mostSimilarItems("House MD"));

Saving and Loading Learner

To save a the trained learner

myLearner.save("myModel"); 

To load a learner

await myLearner.load("myModel"); 

Saving an existing DataBlock

To save a datablock in csv format:

await data.save("IMDB.csv")

You can use the DataBlock.fromCsv() method to load the data in pprec again.

Without DataBlock

pprec takes into account the case when a website does not have any data to build the recommendation on, in this case you can initilize the Learner directly then add users, items, and ratings to it. Example

const myLearner = learner({ learningRate: 1e-3 });

myLearner.newUser("UUID25435");

myLearner.newItem("Squid Games");

await myLearner.addRating("UUID25435", "Squid Games", 4);

The current progress:

  • [x] Learner
  • [x] DataBlock
  • [x] Local DP
  • [x] Documentation: https://pprec.netlify.app/
  • [x] Contribution guide
  • [ ] Output DP
  • [ ] Gradient perturbation
  • [ ] Other algorthims than Matrix factorization \

Support the project ☕

I would really appreciate if you donate to me so i can continue working on the project: Here  

Wanna contribute? check the contribution guide