pmml2js
v1.0.0
Published
Conversion of PMML to JavaScript Code
Downloads
2
Readme
PMML to Javascript (pmml2js)
This projects aims on allowing PMML to JavaScript Code transformation so that you can run it in your browser.
Currently supported are:
- Decision Trees
- Random Forests (comming soon)
- Baysian Classifiers (comming soon)
Decision Trees
The decision tree engine was created by artistoex.
Code Attribution
- Author: artistoex
- Source: http://stackoverflow.com/questions/8368698/how-to-implement-a-decision-tree-in-javascript-looking-for-a-better-solution-th/8369235#8369235
- Date: Dec 3 '11 at 16:50
- SO License: CC-Wiki
- No other License Mentioned (Checked on Dec. 11 2015)
Notes (Andrei Miclaus):
- Depth First Search through the tree.
- Supports non-binary decision trees.
Decision Tree Usage Examples
All examples are available as QUnit tests.
Example 1: Creating a decision tree for binary sorting
/**
Tree (Sort):
5
3 8
<3 >3 <8 >8
**/
QUnit.test("binary search tree as decision tree test", function(assert){
var decisionTree =
new Case( true, Array(
new Case ( function(n){ return n < 5; }, Array(
new Case ( function(n){ return n < 3; }, "<3"),
new Case ( function(n){ return n > 3; }, ">3" )
)),
new Case ( function(n){ return n > 5; }, Array(
new Case ( function(n){ return n < 8; }, "<8"),
new Case ( function(n){ return n > 8; }, ">8" )
))
));
assert.ok(decisionTree.evaluate(1).result == "<3", "Passed <3!");
assert.ok(decisionTree.evaluate(10).result == ">8", "Passed >8!");
})
Example 2: Creating a decision tree for the Iris Dataset
/**
Tree (Sort):
Petal.Length < 2.45
/ \
"setosa" Petal.Width >= 2.45
/ \
"versicolor" "virginica"
**/
QUnit.test("binary search tree as decision tree test", function(assert){
var decisionTree =
new Case( true, Array(
new Case ( function(observation){ return observation.Petal_Length < 2.45; }, "setosa" ),
new Case ( function(observation){ return observation.Petal_Length >= 2.45; }, Array(
new Case ( function(observation){ return observation.Petal_Width < 1.75 }, "versicolor"),
new Case ( function(observation){ return observation.Petal_Width >= 1.75 }, "virginica" )
))
));
dataset = new Array()
// setosa test object
dataset[0] = {
Petal_Length : "2",
Petal_Width : "3",
Sepal_Length : "5",
Sepal_Width : "13"
}
// versicolor test object
dataset[1] = {
Petal_Length : "3",
Petal_Width : "1.5",
Sepal_Length : "5",
Sepal_Width : "13"
}
// virginica test object
dataset[2] = {
Petal_Length : "2.45",
Petal_Width : "1.75",
Sepal_Length : "5",
Sepal_Width : "13"
}
assert.ok(decisionTree.evaluate(dataset[0]).result == "setosa", "Correctly classified as setosa!");
assert.ok(decisionTree.evaluate(dataset[1]).result == "versicolor", "Correctly classified as versicolor!");
assert.ok(decisionTree.evaluate(dataset[2]).result == "virginica", "Correctly classified as virginica!");
})
Using the API for Generating Executable Models
To use the examples, you need resolvable URLs to xml and xsl files. You can get and run the server used in the example below (including xml and xsl example files) from here Analytics Host.
Example 1: Requesting a decision tree for the Iris Dataset
var decisionTree;
//define the callback function used to evaluate the model
function evaluate(generatedDecisionTree){
//initialise your variable with the value of the generated model
decisionTree = generatedDecisionTree;
//test methods
assert.ok(decisionTree.evaluate(dataset[0]).result == "setosa", "Correctly classified as setosa!");
assert.ok(decisionTree.evaluate(dataset[1]).result == "versicolor", "Correctly classified as versicolor!");
assert.ok(decisionTree.evaluate(dataset[2]).result == "virginica", "Correctly classified as virginica!");
//qunit helper for asynchronous tasks
done();
}
initiateExecutableModel("http://localhost:3000/models/test_rpart.xml", "http://localhost:3000/pmml2js_decision_tree.xsl", evaluate);
Running the Tests
To run the tests open ./pmml2js/tests/*.html in the browser of your choice.