pixiedb
v0.5.4
Published
A tiny in-memory javascript database with indexing and SQL like filters.
Downloads
40
Maintainers
Readme
PixieDB
A tiny in-memory javascript database with indexing and SQL like filters.
Features
- Speed - PixieDb perform get in the O(1) and other all operations (insert, delete, select*) in log(n) time. Can perform get operation with unique index (18M ops/s) and binary-index (5M ops/s) which is 15-20 times faster than lokijs/lokidb.
- Quick load - loads data 20x faster than lokijs/lokidb.
- Realtime filtering - perform filtering and event calling in realtime.
- Memory efficient - use iterators and Binary indexes (red black tree) for indexes to perform filtering.
- Events - notifies you about load, insert, update, delete, and quit to sync your state with the database.
- Indexes = for fast filtering.
- Chaining = supports filter chaining.
[!WARNING] Please keep in mind that PixieDb is still in under active development.
Usage
import { PixieDb } from "pixiedb";
const products = [
{ id: 1, name: "Apple", price: 5, category: "Fruit" },
{ id: 2, name: "Banana", price: 10, category: "Fruit" },
{ id: 3, name: "Grapes", price: 6, category: "Fruit" },
{ id: 4, name: "Orange", price: 8, category: "Fruit" },
{ id: 5, name: "Potato", price: 18, category: "Vegetable" },
{ id: 6, name: "Milk", price: 7, category: "Dairy" },
// ...
]
// provide unique key, data and indexes for better performance
// 3rd param data is optional, Can be loaded after using the load method
const pd = new PixieDb('id', ["price", "category"], products)
// or
const pd = new PixieDb<Product>('id', ["price", "category"]) // pass type if using typescript
pd.load(products) // to load data later
const byId = pd.select().eq("id", 2).single()
console.log(byId); // { id: 2, name: "Banana", price: 10, category: "Fruit" }
// can also pass an array of fields to select method to pick only those fields/properties
const fruitBelow10 = pd.select(["id", "name", "price"]).eq("category", "Fruit").lte("price", 10).orderBy(["name", ["price", "desc"]]).range(2, 3).data()
console.log(fruitBelow10); // [{ id: 3, name: "Grapes", price: 6 }, ...]
const updatedBanana = pd.where().eq("name", "Banana").update({price: 100})
// [{ id: 2, name: "Banana", price: 100, category: "Fruit" }, ...]
// delete all docs where name equals "Apple"
const deletedApples = pd.where().eq("name", "Apple").delete()
// [{ id: 1, name: "Apple", price: 5, category: "Fruit"}, ...]
Installation
# using npm
npm install pixiedb
# using pnpm
pnpm add pixiedb
# using yarn
yarn add pixiedb
# using bun
bun add pixiedb
Docs
PixieDb
This is a class which creates an PixieDb instance to use.
// pass type/interface if using typescript
const pd = new PixieDb<Product>('id', ["price", "category"])
// or with data
const pd = new PixieDb<Product>('id', ["price", "category"], products)
Methods
load
Used to import data without cloning (so don't mutate the data or clone before load). Pass true as second parameter to clear the previous data and indexes state. (Default: false).
pd.load(products)
// or
pd.load(products, true)
// remove previous data and index state
get
Get single doc/row using key (primary key/unique id). Returns doc/row, if present else undefined.
pd.get(2)
// { id: 2, name: "Banana", price: 10, category: "Fruit" }
select
Get single doc/row using key (primary key/unique id). Returns doc/row, if present else undefined.
pd.select().eq("category", "Fruit").gte("price", 6).data()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, ...]
pd.select(["id", "name", "price"]).eq("category", "Fruit").lte("price", 6).data()
// [{ id: 1, name: "Apple", price: 5 }, ...]
pd.select().eq("category", "Fruit").between("price", [6, 10]).data()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, { id: 4, name: "Orange", price: 8, category: "Fruit" }, ...]
where
used to perform delete/update with complex filtering
// this will delete and return all the docs according to the filters
pd.where().eq("category", "Fruit").gte("price", 6).delete()
// [{ id: 2, name: "Banana", price: 10, category: "Fruit" }, { id: 3, name: "Grapes", price: 6, category: "Fruit" }, ...]
pd.where().eq("category", "Fruit").between("price", [6, 10]).update({price: 11})
// [{ id: 2, name: "Banana", price: 11, category: "Fruit" }, { id: 3, name: "Grapes", price: 11, category: "Fruit" }, { id: 4, name: "Orange", price: 11, category: "Fruit" }, ...]
data
Get all docs/rows ordered respecting to primary key/unique id. Pass false to get all without clone (don't modify). Default: true
pd.data()
// [{ id: 1, name: "Apple", price: 5, category: "Fruit" }, ...]
count
Get all docs/rows ordered respecting to primary key/unique id. Pass false to get all without clone (don't modify). Default: true
pd.select().count()
// 6
pd.select().eq("category", "Fruit").between("price", [6, 10]).count()
// 4
close
to close/quit/terminate the database and remove all data/indexes and fire "Q" ("quit") event. Pass true to not emit events. Default: false
pd.close()
// or
pd.close(true) // doesn't fire event
toJson
return JSON of all data (without cloning), key and index names.
pd.toJSON()
// { key: "id", indexes: ["price", "category", {name: "id", unique: true}], data: [{ id: 1, name: "Apple", price: 10, category: "Fruit" }, ...]
// this will call the above toJSON method
JSON.stringify(pd)
Roadmap
- [X] load docs
- [X] get all docs
- [X] get docs with key
- [X] Events (load, change, insert, update, delete, quit)
- [X] orderBy with multiple keys (sorting)
- [X] single doc with filters
- [X] count of docs with filters
- [X] update of docs with filters
- [X] delete of docs with filters
- [ ] Plugin support
- [ ] Unique indexes (currently override the previous)
- [X] filters
- [X] eq (equal)
- [X] neq (not equal)
- [X] in (value in)
- [X] nin (value not in)
- [X] between - values within a given range (>= and <=). begin and end values are included.
- [X] nbetween - values not within a given range (< or >). begin and end values are not included.
- [X] gt (greater than)
- [X] gte (greater than or equal to)
- [X] lt (less than)
- [X] lte (less than or equal to)
- [ ] custom query method
- [X] range offset (from) and count (limit of docs to return)
- [ ] multiple tables
- [ ] joins
- [ ] changes api
- [ ] custom clone method
- [ ] custom compare method
- [ ] views
- [ ] Basic views
- [ ] Materialized views (persist)
- [ ] plugins
- [ ] persist (localStorage, indexedb)
- [ ] sync with other databases
- [ ] sync with browser tabs
Other Details
query filters that use binary index (perform operation in log(n))
- eq
- in
- between log(n) + count of docs between
- gt log(n) + count of docs
- gte log(n) + count of docs
- lt log(n) + count of docs
- lte log(n) + count of docs
other query filters
- neq O(n)
- nin O(n)
- nbetween log(n) + count of docs (where value less than or equal to)