pf-value-noise
v1.0.2
Published
N-Dimensional Value Noise Generator
Downloads
8
Readme
pf-value-noise
N-Dimensional Value Noise Generator - A value noise generator for any number of dimensions. Similar to, but faster than Perlin noise.
Examples
// Require the module to use it.
const ValueNoise = require('pf-value-noise')
// Create a 3D value noise generator.
const noise3D = new ValueNoise({ dimensions: 3 })
// Use it to make a 100×100×100 grid of values
const resolution = 100
let data = []
for (let x = 0; x < resolution; ++x) {
for (let y = 0; y < resolution; ++y) {
for (let z = 0; z < resolution; ++z) {
data.push(noise3D.get([ x / resolution, y / resolution, z / resolution ]))
}
}
}
const _ = require('lodash')
data = _(data).chunk(resolution).chunk(resolution).value()
data[5][62][17]
// 0.6594545530358533
The following example creates the above picture.
// Create the canvas
const { createCanvas } = require('canvas')
const [ width, height ] = [ 800, 200 ]
const canvas = createCanvas(width, height)
const ctx = canvas.getContext('2d', { alpha: false })
// Create the image data
const ValueNoise = require('pf-value-noise')
const noise3D = new ValueNoise({ dimensions: 3, seed: 'pillow' })
const resolution = 100
const imageData = ctx.createImageData(width, height)
let dataIndex = 0
for (let row = 0; row < height; ++row) {
for (let col = 0; col < width; ++col) {
imageData.data[dataIndex++] = noise3D.get([ row / resolution, col / resolution, 0 ]) * 256 | 0
imageData.data[dataIndex++] = noise3D.get([ row / resolution, col / resolution, 1 ]) * 256 | 0
imageData.data[dataIndex++] = noise3D.get([ row / resolution, col / resolution, 2 ]) * 256 | 0
++dataIndex
}
}
// Export the image data
const fs = require('fs')
ctx.putImageData(imageData, 0, 0)
canvas.createPNGStream()
.pipe(fs.createWriteStream('rainbow-value-noise.png'))
API
ValueNoise
({Class}): Represents a value noise generator.
const ValueNoise = require('pf-value-noise')
const noiseGenerator = new ValueNoise()
ValueNoise.constructor([options])
Arguments
[options]
(Object): An objects of options.
| Option | Type | Default | Description |
|:---------------:|:--------:|:--------:|:-------------------------------|
| seed
| String | null
| RNG's seed |
| dimensions
| Number | 2
| Number of dimensions |
| min
| Number | 0
| Minimum value returned |
| max
| Number | 1
| Maximum value returned |
| wavelength
| Number | 1
| Size of the first octave |
| octaves
| Number | 8
| Number of octaves to sample |
| octaveScale
| Number | 1/2
| Scaling for successive octaves |
| persistence
| Number | 1/2
| Weight for successive octaves |
| interpolation
| Function | cosine | Interpolation function used |
Note that even with the same seed, a different order of <Perlin>.get()
calls can change the overall noise function since its values are generated lazily.
wavelength
sets the size of the first octave, and each successive octave will be octaveScale
times the previous. The octaves are centered about the origin and added together according to their weight. The first octave has a weight of 1
, and each successive octave will be persistence
times the previous.
The octaves are sampled using the interpolation
function with signature function(a, b, t)
that returns a value between a
and b
according to the parameter 0 <= t <= 1
. The default interpolation function used is cosine interpolation.
interpolation: function (a, b, t) {
return (1 - Math.cos(Math.PI * t)) / 2 * (b - a) + a
}
After the octaves are sampled and added together, the values are adjusted to fall between min
and max
. Note that the value distribution is roughly Gaussian depending on the number of octaves.
ValueNoise.prototype.get(coordinates)
Arguments
coordinates
(Array): The data point to get. Its length should matchdimensions
.
Returns
- (Number): The value at those coordinates.
const noise4D = new ValueNoise({ dimensions: 4 })
noise4D.get([ 1, 2, 3, 4 ])
// 0.538503118881535