pf-perlin
v2.0.0
Published
N-Dimensional Perlin Noise Generator
Downloads
17
Readme
pf-perlin
N-Dimensional Perlin Noise Generator - A Perlin noise generator for any number of dimensions.
Examples
// Require the module to use it.
const Perlin = require('pf-perlin')
// Create a 3D Perlin Noise generator.
const perlin3D = new Perlin({ dimensions: 3 })
// Use it to make a 100x100x100 grid of values
const resolution = 100
let data = []
for (let x = 0; x < resolution; ++x) {
for (let y = 0; y < resolution; ++y) {
for (let z = 0; z < resolution; ++z) {
data.push(perlin3D.get([ x / resolution, y / resolution, z / resolution ]))
}
}
}
const _ = require('lodash')
data = _(data).chunk(resolution).chunk(resolution).value()
data[5][62][17]
// 0.6594545530358533
The following example creates the above picture.
// Create the canvas
const { createCanvas } = require('canvas')
const [ width, height ] = [ 800, 200 ]
const canvas = createCanvas(width, height)
const ctx = canvas.getContext('2d', { alpha: false })
// Create the image data
const Perlin = require('pf-perlin')
const perlin3D = new Perlin({ dimensions: 3, seed: 'pillow' })
const resolution = 100
const imageData = ctx.createImageData(width, height)
let dataIndex = 0
for (let row = 0; row < height; ++row) {
for (let col = 0; col < width; ++col) {
imageData.data[dataIndex++] = perlin3D.get([ row / resolution, col / resolution, 0 ]) * 256 | 0
imageData.data[dataIndex++] = perlin3D.get([ row / resolution, col / resolution, 1 ]) * 256 | 0
imageData.data[dataIndex++] = perlin3D.get([ row / resolution, col / resolution, 2 ]) * 256 | 0
++dataIndex
}
}
// Export the image data
const fs = require('fs')
ctx.putImageData(imageData, 0, 0)
canvas.createPNGStream()
.pipe(fs.createWriteStream('rainbow-perlin.png'))
API
Perlin
({Class}): Represents a Perlin noise generator.
const Perlin = require('pf-perlin')
const noiseGenerator = new Perlin()
Perlin.constructor([options])
Arguments
[options]
(Object): An objects of options. All options are optional.
| Option | Type | Default | Description |
|:---------------:|:--------:|:-------------:|:-------------------------------|
| seed
| String | null
| RNG's seed |
| dimensions
| Number | 2
| Number of dimensions |
| min
| Number | 0
| Minimum value returned |
| max
| Number | 1
| Maximum value returned |
| wavelength
| Number | 1
| Size of the first octave |
| octaves
| Number | 8
| Number of octaves to sample |
| octaveScale
| Number | 1/2
| Scaling for successive octaves |
| persistence
| Number | 1/2
| Weight for successive octaves |
| interpolation
| Function | 6t⁵−15t⁴+10t³ | Interpolation function used |
Note that even with the same seed, a different order of <Perlin>.get()
calls can change the overall noise function since its values are generated lazily.
wavelength
sets the size of the first octave, and each successive octave will be octaveScale
times the previous. The octaves are centered about the origin and added together according to their weight. The first octave has a weight of 1
, and each successive octave will be persistence
times the previous.
The octaves are sampled using the interpolation
function with signature function(a, b, t)
that returns a value between a
and b
according to the parameter 0 <= t <= 1
. The default interpolation function uses the polynomial 6t⁵−15t⁴+10t³ specified by Ken Perlin as an improvement over his earlier 3t²−2t³ (see Improving Noise).
const poly = t => 6 * pow(t, 5) - 15 * pow(t, 4) + 10 * pow(t, 3)
interpolation: function (a, b, t) {
return poly(t) * (b - a) + a
}
After the octaves are sampled and added together, the values are adjusted to fall between min
and max
. Note that the value distribution is roughly Gaussian depending on the number of octaves.
Perlin.prototype.get(coordinates)
Arguments
coordinates
(Array): The data point to get. Its length should matchdimensions
.
Returns
- (Number): The value at those coordinates.
Note: This function may modify coordinates
. If this is an issue, use perlin.get(coordinates.slice())
.
const perlin4D = new Perlin({ dimensions: 4 })
perlin4D.get([ 1, 2, 3, 4 ])
// 0.538503118881535