npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

pdfast

v0.2.0

Published

Fast kernel density estimation library

Downloads

422,668

Readme

Build Status npm version

About

Kernel Density Estimation, generating probability density function (pdf) using triangular kernel, optimized to run in O(N + K).

Where:

  • N: number of elements in the sample.
  • K: number of points to represent the pdf.

API

create(arr, options)

Create pdf with given array and options.

Options:

  • min: min value for the pdf's x range. If resulting pdf won't fit, the pdf's left part will be squeezed, as described here. Defaults to smallest value in the array minus some threshold.
  • max: max value for the pdf's x range. If resulting pdf won't fit, the pdf's right will be squeezed. Defaults to largest value in the array plus some threshold.
  • size: number of points to represent the pdf. Defaults to 50.
  • width: determine how many points to the left and right does an element affect, similar to bandwidth in kernel density estimation. Defaults to 2.
var arr = [1, 2, 3, 3, 4, 5, 5, 5, 6, 8, 9, 9];
var options = {
  min: 0,
  max: 10,
  size: 12,
  width: 2
};

var pdf = pdfast.create(arr, options);

pdf's value:

[ { x: 0, y: 0.020833333333333332 },
  { x: 0.9090909090909091, y: 0.0625 },
  { x: 1.8181818181818181, y: 0.10416666666666667 },
  { x: 2.727272727272727, y: 0.125 },
  { x: 3.6363636363636362, y: 0.14583333333333334 },
  { x: 4.545454545454545, y: 0.16666666666666666 },
  { x: 5.454545454545454, y: 0.10416666666666667 },
  { x: 6.363636363636363, y: 0.041666666666666664 },
  { x: 7.2727272727272725, y: 0.08333333333333333 },
  { x: 8.181818181818182, y: 0.10416666666666667 },
  { x: 9.09090909090909, y: 0.041666666666666664 },
  { x: 10, y: 0 } ]

getExpectedValueFromPdf(pdf)

expect(
  pdfast.getExpectedValueFromPdf([
    {x: 1, y: 0.2},
    {x: 2, y: 0.3},
    {x: 3, y: 0.3},
    {x: 4, y: 0.2},
    {x: 5, y: 0.0}
  ])
).closeTo(2.5, 1e-8);

getXWithLeftTailArea(pdf, area)

var pdf = [
  {x: 1, y: 0.2},
  {x: 2, y: 0.4},
  {x: 3, y: 0.3},
  {x: 4, y: 0.075},
  {x: 5, y: 0.025}
];

expect(pdfast.getXWithLeftTailArea(pdf, 0)).equal(1);
expect(pdfast.getXWithLeftTailArea(pdf, 0.12)).equal(1);
expect(pdfast.getXWithLeftTailArea(pdf, 0.19)).equal(1);
expect(pdfast.getXWithLeftTailArea(pdf, 0.21)).equal(2);
expect(pdfast.getXWithLeftTailArea(pdf, 0.95)).equal(4);
expect(pdfast.getXWithLeftTailArea(pdf, 1)).equal(5);

getPerplexity(pdf)

expect(
  pdfast.getPerplexity([
    {x: 1, y: 0.2},
    {x: 2, y: 0.4},
    {x: 3, y: 0.3},
    {x: 4, y: 0.075},
    {x: 5, y: 0.025}
  ])
).closeTo(3.8041316039860336, EPS);

getUnifiedMinMax(arr, options)

Takes the same options as create. Returns an object with key min and max.

If you left min or max or both to be non number, it will be filled with number which will fit the data distribution.

getUnifiedMinMaxMulti([arr1, arr2, ...], options)

Similar with getUnifiedMinMax, but takes list of arrays. The generated min and/or max will fit all the arrays' distribution.

Useful when trying to generate pdf for multiple labelled data and want to display them in the same chart. With same min and max, one can combine the pdf correctly.

License

MIT