npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

path-scc

v1.0.2

Published

Find all strongly-connected components in a graph structure.

Downloads

26

Readme

Path-based strong component algorithm

Find all strongly-connected components in a graph structure. These can be used to identify cycles (= components with more than one node).

Usage

const scc = require('scc').scc // or: import {scc} from 'scc'
const nodes = [{ id: 'A' }, { id: 'B' }]
const links = [{ source: 'A', target: 'B' }, { source: 'B', target: 'A' }]
const components = scc(nodes, links)
components == [{ id: 'A' }, { id: 'B' }]

TypeScript type declarations are included.

Description

Source: WikiPedia

The algorithm performs a depth-first search of the given graph G, maintaining as it does two stacks S and P (in addition to the normal call stack for a recursive function). Stack S contains all the vertices that have not yet been assigned to a strongly connected component, in the order in which the depth-first search reaches the vertices. Stack P contains vertices that have not yet been determined to belong to different strongly connected components from each other. It also uses a counter C of the number of vertices reached so far, which it uses to compute the preorder numbers of the vertices.

When the depth-first search reaches a vertex v, the algorithm performs the following steps:

  1. Set the preorder number of v to C, and increment C.
  2. Push v onto S and also onto P.
  3. For each edge from v to a neighboring vertex w:
    • If the preorder number of w has not yet been assigned, recursively search w;
    • Otherwise, if w has not yet been assigned to a strongly connected component:
      • Repeatedly pop vertices from P until the top element of P has a preorder number less than or equal to the preorder number of w.
  4. If v is the top element of P:
    • Pop vertices from S until v has been popped, and assign the popped vertices to a new component.
    • Pop v from P.

The overall algorithm consists of a loop through the vertices of the graph, calling this recursive search on each vertex that does not yet have a preorder number assigned to it.