npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

openai-memory

v1.0.1

Published

provides functionality to remember conversations with OpenAI.

Downloads

61

Readme

OpenAI Memory

OpenAI Memory provides functionality to remember conversations with OpenAI.

npm license

Features

  • Conversation Management: Keep track of user conversations effortlessly to provide context-aware responses.
  • Customizable Storage: Use in-memory storage by default or switch to local storage, databases, or other storage systems.
  • Initial Prompt Setting: Control the AI's behavior through initial prompts or arrays of messages.
  • Seamless OpenAI API Integration: Works similarly to the openai package with added functionalities.

Installation

Install OpenAI Memory using your preferred package manager:

npm

npm install openai-memory

Yarn

yarn add openai-memory

pnpm

pnpm add openai-memory

Bun

bun add openai-memory

Usage

To use OpenAI Memory in your project, follow these steps:

Importing the Package

  • TypeScript

    import { ConversationManager, InMemoryStorage } from 'openai-memory';
  • JavaScript (CommonJS)

    const { ConversationManager, InMemoryStorage } = require('openai-memory');
  • JavaScript (ES Modules)

    import { ConversationManager, InMemoryStorage } from 'openai-memory';

    Note: To use ES Modules, add "type": "module" to your package.json or change your file extension to .mjs.

Initializing ConversationManager

Use ConversationManager to manage conversations with OpenAI.

  • Required Options
    • apiKey: Your OpenAI API key.
    • model: The OpenAI model to use (e.g., 'gpt-3.5-turbo').
  • Optional Options
    • temperature: Adjusts the creativity level of the responses.
    • maxTokens: Maximum number of tokens for the generated response.
    • initialMessages: Initial prompts or an array of messages to control the AI's behavior.
    • storage: Custom storage to change how conversation histories are saved.

Example Code

TypeScript Example

import { ConversationManager, InMemoryStorage } from 'openai-memory';

const apiKey = process.env.OPENAI_API_KEY; // Use environment variables for security.
const initialPrompt = 'You are a helpful assistant that provides detailed and polite responses.';

const conversationManager = new ConversationManager({
  apiKey,
  model: 'gpt-3.5-turbo', // Specify the model.
  temperature: 0.7, // Adjust creativity.
  maxTokens: 1000, // Max tokens for the response.
  initialMessages: initialPrompt, // Set initial prompt.
  storage: new InMemoryStorage(), // Default storage.
});

async function chat() {
  const conversationId = 'user-123'; // Unique ID per user.

  const userMessage = "Hello, what's the weather like today?";
  const response = await conversationManager.sendMessage(conversationId, userMessage);

  console.log('AI Response:', response);
}

chat();

JavaScript Example

const { ConversationManager, InMemoryStorage } = require('openai-memory');

const apiKey = process.env.OPENAI_API_KEY; // Use environment variables for security.
const initialPrompt = 'You are a helpful assistant that provides detailed and polite responses.';

const conversationManager = new ConversationManager({
  apiKey,
  model: 'gpt-3.5-turbo', // Specify the model.
  temperature: 0.7, // Adjust creativity.
  maxTokens: 1000, // Max tokens for the response.
  initialMessages: initialPrompt, // Set initial prompt.
  storage: new InMemoryStorage(), // Default storage.
});

async function chat() {
  const conversationId = 'user-123'; // Unique ID per user.

  const userMessage = "Hello, what's the weather like today?";
  const response = await conversationManager.sendMessage(conversationId, userMessage);

  console.log('AI Response:', response);
}

chat();

Setting Initial Prompts

You can control the AI's behavior with initial prompts:

  • String Format

    const initialPrompt = 'You are a friendly assistant.';
  • Array of Messages

    const initialMessages = [
      { role: 'system', content: 'You are a friendly assistant.' },
      { role: 'user', content: 'Hello?' },
      { role: 'assistant', content: 'Hello! How can I assist you today?' },
    ];

Customizing Storage

OpenAI Memory uses in-memory storage by default, but you can customize it to use local storage or databases.

Using Local Storage (Browser Environment)

In a browser environment, you can use local storage to save conversation histories.

import { ConversationManager, StorageInterface, Message } from 'openai-memory';

class LocalStorageStorage implements StorageInterface {
  async getMessages(conversationId) {
    const messages = localStorage.getItem(conversationId);
    return messages ? JSON.parse(messages) : [];
  }

  async saveMessage(conversationId, message) {
    const messages = await this.getMessages(conversationId);
    messages.push(message);
    localStorage.setItem(conversationId, JSON.stringify(messages));
  }

  async resetConversation(conversationId) {
    localStorage.removeItem(conversationId);
  }
}

const storage = new LocalStorageStorage();

const conversationManager = new ConversationManager({
  apiKey,
  model: 'gpt-3.5-turbo',
  storage,
  // Other options...
});

Using a Database (e.g., MongoDB)

To use a database for storing conversation histories, implement the StorageInterface.

import { ConversationManager, StorageInterface, Message } from 'openai-memory';
import mongoose from 'mongoose';

// Define MongoDB schema
const messageSchema = new mongoose.Schema({
  conversationId: String,
  role: String,
  content: String,
});

const MessageModel = mongoose.model('Message', messageSchema);

class MongoDBStorage implements StorageInterface {
  async getMessages(conversationId) {
    return await MessageModel.find({ conversationId });
  }

  async saveMessage(conversationId, message) {
    const msg = new MessageModel({ conversationId, ...message });
    await msg.save();
  }

  async resetConversation(conversationId) {
    await MessageModel.deleteMany({ conversationId });
  }
}

mongoose.connect('mongodb://localhost:27017/your-db');

const storage = new MongoDBStorage();

const conversationManager = new ConversationManager({
  apiKey,
  model: 'gpt-3.5-turbo',
  storage,
  // Other options...
});

Frontend and Backend Usage

Frontend Usage

You can create a simple interface to send messages to the server and display the AI's responses. The frontend communicates with the server via HTTP requests.

<!-- index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Chatbot</title>
  <style>
    /* Simple styling */
    #chat-container {
      max-width: 600px;
      margin: 0 auto;
    }
    .user, .assistant {
      padding: 10px;
      margin: 5px;
    }
    .user {
      background-color: #d1e7dd;
      text-align: right;
    }
    .assistant {
      background-color: #f8d7da;
      text-align: left;
    }
  </style>
</head>
<body>
  <h1>Chatbot</h1>
  <div id="chat-container"></div>
  <input type="text" id="message-input" placeholder="Type your message here">
  <button id="send-button">Send</button>

  <script src="script.js"></script>
</body>
</html>
// script.js

const conversationId = 'user-123'; // Unique ID per user.

document.getElementById('send-button').addEventListener('click', sendMessage);

async function sendMessage() {
  const messageInput = document.getElementById('message-input');
  const message = messageInput.value.trim();
  if (!message) return;

  displayMessage('user', message);
  messageInput.value = '';

  try {
    const response = await fetch('http://localhost:3000/api/chat', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ conversationId, message }),
    });

    const data = await response.json();
    if (response.ok) {
      displayMessage('assistant', data.content);
    } else {
      console.error('Error:', data.error);
      displayMessage('assistant', 'An error occurred.');
    }
  } catch (error) {
    console.error('Exception:', error);
    displayMessage('assistant', 'Error communicating with the server.');
  }
}

function displayMessage(role, content) {
  const chatContainer = document.getElementById('chat-container');
  const messageElement = document.createElement('div');
  messageElement.className = role;
  messageElement.textContent = `${role === 'user' ? 'User' : 'AI'}: ${content}`;
  chatContainer.appendChild(messageElement);
}

Note: Do not include your API key in the frontend code. Always keep it secure on the server-side.

Server-Side Usage

Set up an Express.js server to handle API requests:

const express = require('express');
const cors = require('cors');
const { ConversationManager, InMemoryStorage } = require('openai-memory');

const app = express();
app.use(cors());
app.use(express.json());

const apiKey = process.env.OPENAI_API_KEY; // Use environment variables for security.
const conversationManager = new ConversationManager({
  apiKey,
  model: 'gpt-3.5-turbo',
  storage: new InMemoryStorage(), // Use appropriate storage.
});

app.post('/api/chat', async (req, res) => {
  try {
    const { conversationId, message } = req.body;

    if (!conversationId || !message) {
      return res.status(400).json({ error: 'conversationId and message are required.' });
    }

    const reply = await conversationManager.sendMessage(conversationId, message);
    res.json({ content: reply });
  } catch (error) {
    console.error('Error:', error);
    res.status(500).json({ error: 'An error occurred on the server.' });
  }
});

const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
  console.log(`Server is running on port ${PORT}.`);
});

Contributing

We welcome contributions to OpenAI Memory! Whether it's reporting a bug, suggesting an enhancement, or submitting a pull request, your input is valued.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

For any questions, suggestions, or feedback, please contact love1ace.