npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

openai-function-calling-tools

v6.8.0

Published

OpenAI Function calling tools

Downloads

91

Readme

OpenAI Function calling tools

LICENSE codecov

OpenAI Function calling tools

OpenAI Function calling tools is a repository that offers a set of tools to help you easy to build a function calling model with OpenAI API.

More information about function calling

Sample: https://chatFn.io

🪓 Tools

The repo provides the following tools you can use out of the box:

  • 🗺️ ShowPoisOnMap: A tool that can show points of interest on a map.
  • 🌐 ReverseGeocode: A tool that can convert coordinates into a human-readable address.
  • ⏰ Clock: A clock that can tell you the time.
  • 🧮 Calculator: A simple calculator that can do basic arithmetic. Input should be a math expression.
  • 🔍 GoogleCustomSearch: A wrapper around the Google Custom Search API. Useful for when you need to answer questions about current events. Input should be a search query.
  • 🔍 BingCustomSearch: A wrapper around the Bing Custom Search API. Useful for when you need to answer questions about current events. Input should be a search query.
  • 🔍 SerperCustomSearch: A wrapper around the SerpAPI. Useful for when you need to answer questions about current events. Input should be a search query.
  • 🏞️ SerperImagesSearch: Use SerpAPI to search images. Input should be a search query.
  • 📁 fs: WriteFileTool abd ReadFileTool access to the file system. Input should be a file path and text written to the file.
  • 🪩 webbrowser: A web browser that can open a website. Input should be a URL.
  • 🚧 sql: Input to this tool is a detailed and correct SQL query, output is a result from the database.
  • 🚧 JavaScriptInterpreter: A JavaScript interpreter. Input should be a JavaScript program string.

You can use { Tool } factory function to create a tool instance. See /tools for more examples.

📦 Quick Install

npm install openai-function-calling-tools

📖 Usage

Example 1: Function Calls

use JavaScriptInterpreter to calculate 0.1 + 0.2

import { Configuration, OpenAIApi } from "openai";
import { createCalculator } from "openai-function-calling-tools"

const configuration = new Configuration({
    apiKey: process.env.OPENAI_API_KEY,
  });
const openai = new OpenAIApi(configuration);

const QUESTION = "What is 100*2?";

const messages = [
  {
    role: "user",
    content: QUESTION,
  },
];

# ✨ STEP 1: new the tools you want to use
const [calculator, calculatorSchema] = createCalculator();

# ✨ STEP 2:  add the tools to the functions object
const functions = {
  calculator,
};

const getCompletion = async (messages) => {
  const response = await openai.createChatCompletion({
    model: "gpt-3.5-turbo-0613",
    messages,
    # ✨ STEP 3: add the tools to the schema
    functions: [calculatorSchema],
    temperature: 0,
  });

  return response;
};

console.log("Question: " + QUESTION);
let response = await getCompletion(messages);

if (response.data.choices[0].finish_reason === "function_call") {
  const fnName = response.data.choices[0].message.function_call.name;
  const args = response.data.choices[0].message.function_call.arguments;

  console.log("Function call: " + fnName);
  console.log("Arguments: " + args);

  # ✨ STEP 4: call the function
  const fn = functions[fnName];
  const result = fn(JSON.parse(args));

  console.log("Calling Function Result: " + result);

  messages.push({
    role: "assistant",
    content: null,
    function_call: {
      name: fnName,
      arguments: args,
    },
  });

  messages.push({
    role: "function",
    name: fnName,
    content: JSON.stringify({ result: result }),
  });

  // call the completion again
  response = await getCompletion(messages);

  console.log(response.data.choices[0].message.content);
}

Example 2: Function Calls with Google Custom Search

📝 Note: You need to apply for a Google Custom Search API key and a Google Custom Search Engine ID to use this tool.

The following is a sequence diagram of the example

sequenceDiagram
  participant U as User
  participant M as Main Function
  participant O as OpenAI API
  participant F as Functions Object
  participant GC as Google Custom Search

  U->>M: Execute main function
  M->>M: Initialize configuration and API
  M->>M: Define QUESTION variable
  M->>M: Create Google Custom Search tool
  M->>F: Add tool to functions object
  loop Chat Completion Loop
      M->>O: Request chat completion
      O-->>M: Return response
      alt If finish reason is "stop"
          M->>U: Display answer and exit loop
      else If finish reason is "function_call"
          M->>M: Parse function call name and arguments
          M->>F: Invoke corresponding function
          F->>GC: Perform Google Custom Search
          GC-->>F: Return search results
          F->>M: Receive function result
          M->>M: Add result to message queue
          M->>M: Output function call details
      else Other cases
          M->>M: Continue loop
      end
  end

Code

const { Configuration, OpenAIApi } = require("openai");
const { createGoogleCustomSearch } = require("openai-function-calling-tools");

const main = async () => {
  const configuration = new Configuration({
    apiKey: process.env.OPENAI_API_KEY,
  });
  const openai = new OpenAIApi(configuration);

  const QUESTION = "How many tesla model 3 sale in 2022?"

  const messages = [
    {
      role: "user",
      content: QUESTION,
    },
  ];

  // ✨ STEP 1: new the tools you want to use
  const [googleCustomSearch, googleCustomSearchSchema] =
    createGoogleCustomSearch({
      apiKey: process.env.GOOGLE_API_KEY,
      googleCSEId: process.env.GOOGLE_CSE_ID,
    });


  // ✨ STEP 2:  add the tools to the functions object
  const functions = {
    googleCustomSearch,
  };

  const getCompletion = async (messages) => {
    const response = await openai.createChatCompletion({
      model: "gpt-3.5-turbo-0613",
      messages,
      // ✨ STEP 3: add the tools schema to the functions parameter
      functions: [googleCustomSearchSchema],
      temperature: 0,
    });

    return response;
  };
  let response;

  console.log("Question: " + QUESTION);

  while (true) {
    response = await getCompletion(messages);

    if (response.data.choices[0].finish_reason === "stop") {
      console.log(response.data.choices[0].message.content);
      break;
    } else if (response.data.choices[0].finish_reason === "function_call") {
      const fnName = response.data.choices[0].message.function_call.name;
      const args = response.data.choices[0].message.function_call.arguments;

      const fn = functions[fnName];
      const result = await fn(JSON.parse(args));

      console.log(`Function call: ${fnName}, Arguments: ${args}`);
      console.log(`Calling Function ${fnName} Result: ` + result);

      messages.push({
        role: "assistant",
        content: "",
        function_call: {
          name: fnName,
          arguments: args,
        },
      });

      messages.push({
        role: "function",
        name: fnName,
        content: JSON.stringify({ result: result }),
      });
    }
  }
};

main();

Example 3: Schema Extraction

Example to extract schema from a function call

Tree structure:

import { Configuration, OpenAIApi } from "openai";

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);

const getCompletion = async (messages) => {
  const response = await openai.createChatCompletion({
    model: "gpt-3.5-turbo-0613",
    messages: [
      {
        role: "user",
        content: `root
              ├── folder1
              │   ├── file1.txt
              │   └── file2.txt
              └── folder2
                  ├── file3.txt
                      └── subfolder1
                              └── file4.txt`
      },
    ],
    functions: [
      {
        "name": "buildTree",
        "description": "build a tree structure",
        "parameters": {
          "type": "object",
          "properties": {
            "name": {
              "type": "string",
              "description": "The name of the node"
            },
            "children": {
              "type": "array",
              "description": "The tree nodes",
              "items": {
                "$ref": "#"
              }
            },
            "type": {
              "type": "string",
              "description": "The type of the node",
              "enum": [
                "file",
                "folder"
              ]
            }
          },
          "required": [
            "name",
            "children",
            "type"
          ]
        }
      }
    ],
    temperature: 0,
  });

  return response;
};

let response = await getCompletion();

if (response.data.choices[0].finish_reason === "function_call") {
  const args = response.data.choices[0].message.function_call.arguments;
  // 🌟 output the Tree structure data
  console.log(args);
}

💻 Supported Environments

  • Node.js v16 or higher
  • Cloudflare Workers
  • Vercel / Next.js (Backend, Serverless and Edge functions 🔥)
  • Supabase Edge Functions
  • 🚧 Browser

🛡️ Safe for Production

Security Status

🌟 Inspiration

  • LangChainAI