openai-edge-fns
v1.1.0
Published
Use OpenAI's API from an edge runtime, using standard Web APIs only
Downloads
4
Readme
OpenAI Edge
A TypeScript module for querying OpenAI's API using fetch
(a standard Web API)
instead of axios
. This is a drop-in replacement for the official openai
module (which has axios
as a dependency).
As well as reducing the bundle size, removing the dependency means we can query OpenAI from edge environments. Edge functions such as Next.js Edge API Routes are very fast and, unlike lambda functions, allow streaming data to the client.
The latest version of this module has feature parity with the official v3.2.1
.
Installation
yarn add openai-edge
or
npm install openai-edge
Responses
Every method returns a promise resolving to the standard fetch
response i.e.
Promise<Response>
. Since fetch
doesn't have built-in support for types in
its response data, openai-edge
includes an export ResponseTypes
which you
can use to assert the correct type on the JSON response:
import { Configuration, OpenAIApi, ResponseTypes } from "openai-edge"
const configuration = new Configuration({
apiKey: "YOUR-API-KEY",
})
const openai = new OpenAIApi(configuration)
const response = await openai.createImage({
prompt: "A cute baby sea otter",
size: "512x512",
response_format: "url",
})
const data = (await response.json()) as ResponseTypes["createImage"]
const url = data.data?.[0]?.url
console.log({ url })
Without global fetch
This module has zero dependencies and it expects fetch
to be in the global
namespace (as it is in web, edge and modern Node environments). If you're
running in an environment without a global fetch
defined e.g. an older version
of Node.js, please pass fetch
when creating your instance:
import fetch from "node-fetch"
const openai = new OpenAIApi(configuration, undefined, fetch)
Available methods
cancelFineTune
createAnswer
createChatCompletion
createClassification
createCompletion
createEdit
createEmbedding
createFile
createFineTune
createImage
createImageEdit
createImageVariation
createModeration
createSearch
createTranscription
createTranslation
deleteFile
deleteModel
downloadFile
listEngines
listFiles
listFineTuneEvents
listFineTunes
listModels
retrieveEngine
retrieveFile
retrieveFineTune
retrieveModel
Edge route handler examples
Here are some sample
Next.js Edge API Routes
using openai-edge
.
1. Streaming chat with gpt-3.5-turbo
Note that when using the stream: true
option, OpenAI responds with
server-sent events.
Here's an example
react hook to consume SSEs
and here's a full NextJS example.
import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi } from "openai-edge"
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)
const handler = async (req: NextRequest) => {
const { searchParams } = new URL(req.url)
try {
const completion = await openai.createChatCompletion({
model: "gpt-3.5-turbo",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "Who won the world series in 2020?" },
{
role: "assistant",
content: "The Los Angeles Dodgers won the World Series in 2020.",
},
{ role: "user", content: "Where was it played?" },
],
max_tokens: 7,
temperature: 0,
stream: true,
})
return new Response(completion.body, {
headers: {
"Access-Control-Allow-Origin": "*",
"Content-Type": "text/event-stream;charset=utf-8",
"Cache-Control": "no-cache, no-transform",
"X-Accel-Buffering": "no",
},
})
} catch (error: any) {
console.error(error)
return new Response(JSON.stringify(error), {
status: 400,
headers: {
"content-type": "application/json",
},
})
}
}
export const config = {
runtime: "edge",
}
export default handler
2. Text completion with Davinci
import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi, ResponseTypes } from "openai-edge"
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)
const handler = async (req: NextRequest) => {
const { searchParams } = new URL(req.url)
try {
const completion = await openai.createCompletion({
model: "text-davinci-003",
prompt: searchParams.get("prompt") ?? "Say this is a test",
max_tokens: 7,
temperature: 0,
stream: false,
})
const data = (await completion.json()) as ResponseTypes["createCompletion"]
return new Response(JSON.stringify(data.choices), {
status: 200,
headers: {
"content-type": "application/json",
},
})
} catch (error: any) {
console.error(error)
return new Response(JSON.stringify(error), {
status: 400,
headers: {
"content-type": "application/json",
},
})
}
}
export const config = {
runtime: "edge",
}
export default handler
3. Creating an Image with DALL·E
import type { NextRequest } from "next/server"
import { Configuration, OpenAIApi, ResponseTypes } from "openai-edge"
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)
const handler = async (req: NextRequest) => {
const { searchParams } = new URL(req.url)
try {
const image = await openai.createImage({
prompt: searchParams.get("prompt") ?? "A cute baby sea otter",
n: 1,
size: "512x512",
response_format: "url",
})
const data = (await image.json()) as ResponseTypes["createImage"]
const url = data.data?.[0]?.url
return new Response(JSON.stringify({ url }), {
status: 200,
headers: {
"content-type": "application/json",
},
})
} catch (error: any) {
console.error(error)
return new Response(JSON.stringify(error), {
status: 400,
headers: {
"content-type": "application/json",
},
})
}
}
export const config = {
runtime: "edge",
}
export default handler